Почему амплитуда суммированного сокращения больше чем одиночного

Суммация сокращений, виды суммации. Условия суммации.

Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного

Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного

Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного

Если на мышцу наносятся два и более раздражений с интервалом менее продолжительности одиночного сокращения, но более продолжительности рефрактрного периода ПД, то происходит суммация сокращений, в результате которой сократительный эффект усиливается.

Существует два типа суммации: частичная и полная

Частичная (или неполная) суммация возникает, если

· интервал между раздражениями меньше продолжительности одиночного мышечного сокращения;

· больше продолжительности фазы сокращения, т.е. если второе раздражение попадает в фазу расслабления.

В результате амплитуда мышечного сокращения возрастает с образованием двух вершин.

Полная суммация возникает, если:

· интервал между раздражениями меньше продолжительности фазы сокращения, но больше продолжительности рефрактерного периода;

· второе раздражение попадает в фазу сокращения.

В результате амплитуда мышечного сокращения изменяется (увеличивается или уменьшается относительно одиночного сокращения) с образованием одной вершины

Увеличение или уменьшение амплитуды связано с изменением возбудимости в процессе возбуждения и зависит от того в какую фазу измененной возбудимости наносится следующее раздражение.

Тетанус, его виды. Теории тетануса. Оптимум и пессимум частоты раздражения.

Различают два вида тетануса: зубчатый и гладкий. В их основе лежат механизмы частичной или полной суммации.

Зубчатый тетанусразвивается на ряд последовательных раздражений, интервал между которыми больше продолжительности фазы сокращения, но меньше продолжительности одиночного мышечного сокращения (интервал от 100 до 50 мс при частоте раздражений от 10 до 20 Гц). При этом каждое новое сокращение формируется на фоне не завершившегося расслабления мышцы, образуя новые вершины последующих сокращений («зубцы»). Высота суммарного сокращения зависит от ритма и силы раздражений и определяется исходным уровнем формирования каждого следующего сокращения (чем выше уровень, тем больше амплитуда). В начале фазы расслабления этот уровень выше, чем в конце.

Гладкий тетанус развивается на ряд последовательных раздражений, интервал между которыми меньше длительности фазы сокращения, но больше продолжительности потенциала действия (интервал от 50 до 5 мс при частоте 20 до 200 Гц). Каждое новое сокращение формируется на фоне не завершившегося сокращения мышцы, образуя единую, гладкую вершину. Ее высота определяется уровнем измененной возбудимости в процессе возбуждения. Если каждый следующий раздражитель попадает в фазу экзальтации (повышенной возбудимости), то амплитуда сокращения будет большой. Если импульсы попадают в период сниженной возбудимости (относительная рефрактерность), то амплитуда будет снижена.

Оптимальная частота – максимальная частота раздражений, при которой возникает максимальная амплитуда тетанического ответа.

Пессимум – снижение амплитуды тетанического сокращения при увеличении частоты раздражений (выше оптимальной величины).

Пессимальная частота – максимальная частота (сверх оптимальной), при которой возникает минимальная амплитуда тетанического ответа.

Источник

Суммация сокращений и тетанус

Если в эксперименте на отдельное мышечное волокно или на всю мышцу действуют два быстро следующих друг за другом сильных одиночных раздражения, то возникающее сокращение будет иметь большую амплитуду, чем максимальное сокращение при одиночном раздражении. Сократительные эффекты, вызванные первым и вторым раздражениями, как бы складываются. Это явление называется суммацией сокращений (рис. 29). Оно наблюдается как при прямом, так и при непрямом раздражении мышцы.

Для возникновения суммации необходимо, чтобы интервал между раздражением имел определенную длительность: он должен быть длиннее рефрактерного периода, иначе на второе раздражение не будет ответа, и короче всей длительности сократительного ответа, чтобы второе раздражение подействовало на мышцу раньше, чем она успеет расслабиться после первого раздражения. При этом возможны два варианта.

Если второе раздражение поступает, когда мышца уже начала расслабляться, то на миографической кривой вершина этого сокращения будет отделена от вершины первого западенисм (рис. 29, Ж — Г). Если же второе раздражение действует, когда первое еще не дошло до своей вершины, то второе сокращение полностью сливается с первым, образуя единую суммированную вершину (рис. 29, А — В).

Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного

Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного

Как при полной, так и при неполной суммации сокращений потенциалы действия не суммируются.

Тетанус мышцы. Если на отдельное мышечное волокно или на всю мышцу действуют ритмические раздражения с такой частотой, что их эффекты суммируются, наступает сильное и длительное сокращение мышцы, называемое тетаническим сокращением, или тетанусом. Амплитуда его может быть в несколько раз больше величины максимального одиночного сокращения.

После прекращения тетанического раздражения волокна полностью расслабляются, их исходная длина восстанавливается лишь по истечении некоторого времени. Это явление называется цоелстетанической, или остаточной, контрактурой.

Чем быстрее сокращаются и расслабляются волокна мышцы, тем чаще должны быть раздражения, чтобы вызвать тетанус.

Источник

Одиночных и суммированных (тетанических) сокращений мышц. Механизмы мышечного тонуса. Оптимум и пессимум мышечного сокращения.

Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного

Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного

Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного

Существует два вида мышечных сокращений – одиночное и тетаническое. Одиночное мышечное сокращение является единственным видом сокращений для сердечной мышцы, а в скелетной мускулатуре оно носит искусственную этиологию и возникает в ответ на одиночный электрический сигнал и возникновение потенциала действия (ПД). Такое сокращение, длящееся » 100 мс, имеет форму волны и включает три фазы:

1 – латентный период (от 2-3 до 10 мс), длящийся от момента нанесения раздражения до начала сокращения, 2 – фаза укорочения или сокращения (40-50 мс)
3 – фаза расслабления (около 50мс). В естественных условиях импульсы поступают не одиночно, а сериями не менее 15-50 имп/с, на что мышца отвечает возникновением тетанического сокращения (тетануса). В его основе лежит явление суммации нескольких одиночных сокращений. В зависимости от частоты импульсов различают зубчатый и гладкий тетанус

Зубчатый тетанус (неполный) возникает в том случае, когда каждый последующий импульс приходит в фазу расслабления мышцы.

Если частота раздражения выше, и каждый последующий импульс приходит в фазу укорочения мышцы, то происходит полная суммация, и тетаническое сокращение носит слитный характер –гладкий тетанус (полный).

Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного

Одиночное сокращение. Раздражение мышцы или иннервирующего ее двигательного нерва одиночным стимулом вызывает одиночное сокращение мышцы. В нем различают две основные фазы: фазу сокращения и фазу расслабления. Сокращение мышечного волокна начинается уже во время восходящей ветви ПД. Длительность сокращения в каждой точке мышечного волокна в десятки раз превышает продолжительность ПД. Поэтому наступает момент, когда ПД прошел вдоль всего волокна и закончился, волна же сокращения охватила все волокно и оно продолжает быть укороченным. Это соответствует моменту максимального укорочения или напряжения мышечного волокна.

Причина суммации сокращений при тетанусе кроется в накоплении ионов Са++ в межфибриллярном пространстве до концентрации 5*10 6 мМ/л. После достижения этой величины дальнейшее накопление Са++ не приводит к увеличению амплитуды тетануса.

Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного

Если после достижения гладкого тетануса еще больше увеличивать частоту раздражения, то мышца при какой-то частоте начинает вдруг расслабляться. Это явление называется пессимумом. Он наступает тогда, когда каждый следующий импульс попадает в рефрактерность от предыдущего.

Повышение частоты и силы раздражения до известного предела вызывает увеличение высоты тетанического сокращения скелетной мышцы. Наиболее благоприятная частота нервных импульсов, поступающих в скелетную мышцу, вызывает наибольшую высоту тетануса. Эта частота называется оптимальной, или оптимумом частоты. Оптимуму частоты соответствует такая частота, при которой каждое последующее раздражение застает скелетную мышцу в состоянии наибольшей возбудимости, наблюдающейся в экзальтационной фазе.

Источник

Физиология человека. Общая. Спортивная. Возрастная (15 стр.)

Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного

Рис. 11. Одиночное сокращение, зубчатый и сплошной тетанус камбаловидной мышцы человека

(по: Н.В. Зимкин и др., 1984); верхняя кривая – сокращение мышцы, нижняя – отметка раздражения мышцы, справа указана частота раздражения

Если интервалы между нервными импульсами короче, чем длительность одиночного сокращения, то возникает явление суперпозиции – наложение механических эффектов мышечного волокна друг на друга и наблюдается сложная форма сокращения – тетанус. Различают две формы тетануса – зубчатый тетанус, возникающий при более редком раздражении, когда происходит попадание каждого следующего нервного импульса в фазу расслабления отдельных одиночных сокращений, и сплошной, или гладкий, тетанус, возникающий при более частом раздражении, когда каждый следующий импульс попадает в фазу сокращения (рис. 11). Таким образом (в некоторых границах) между частотой импульсов возбуждения и амплитудой сокращения волокон ДЕ существует определенное соотношение: при небольшой частоте (например, 5–8 имп. в 1 с) возникают одиночные сокращения, при увеличении частоты (15–20 имп. в 1 с) – зубчатый тетанус, при дальнейшем нарастании частоты (25–60 имп. в 1 с) – гладкий тетанус. Одиночное сокращение – более слабое и менее утомительное, чем тетаническое. Зато тетанус обеспечивает в несколько раз более мощное, хотя и кратковременное сокращение мышечного волокна.

Сокращение целой мышцы зависит от формы сокращения отдельных ДЕ и их координации во времени. При обеспечении длительной, но не очень интенсивной работы, отдельные ДЕ сокращаются попеременно (рис. 12), поддерживая общее напряжение мышцы на заданном уровне (например, при беге на длинные и сверхдлинные дистанции). При этом отдельные ДЕ могут развивать как одиночные, так и тетанические сокращения, что зависит от частоты нервных импульсов. Утомление в этом случае развивается медленно, так как, работая по очереди, ДЕ в промежутках между активацией успевают восстанавливаться. Однако для мощного кратковременного усилия (например, поднятия штанги) требуется синхронизация активности отдельных ДЕ, т. е. одновременное возбуждение практически всех ДЕ, что, в свою очередь, требует одновременной активации соответствующих нервных центров и достигается в результате длительной тренировки. При этом осуществляется мощное и весьма утомительное тетаническое сокращение.

Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного

Рис. 12. Различные режимы работы двигательных единиц (ДЕ)

Амплитуда сокращения одиночного волокна не зависит от силы надпорогового раздражения (закон «Все или ничего»), В отличие от этого, при нарастании силы надпорогового раздражения сокращение целой мышцы постепенно растет до максимальной амплитуды.

Работа мышцы с небольшой нагрузкой сопровождается редкой частотой нервных импульсов и вовлечением небольшого числа ДЕ. В этих условиях, накладывая отводящие электроды на кожу над мышцей и используя усилительную аппаратуру, можно на экране осциллографа или с применением чернильной записи на бумаге зарегистрировать одиночные потенциалы действия отдельных ДЕ. В случае же значительных напряжений потенциалы действия многих ДЕ. алгебраически суммируются, возникает сложная интегрированная кривая записи электрической активности целой мышцы – электромиограмма (ЭМГ).

Форма ЭМГ отражает характер работы мышцы: при статических усилиях она имеет непрерывный вид, а при динамической работе – вид отдельных пачек импульсов, приуроченных в основном к начальному моменту сокращения мышцы и разделенных периодами «электрического молчания». Особенно хорошо ритмичность появления подобных пачек наблюдается у спортсменов при циклической работе (рис. 13). У маленьких детей и неадаптированных к такой работе лиц четких периодов отдыха не наблюдается, что отражает недостаточное расслабление мышечных волокон работающей мышцы.

Чем больше внешняя нагрузка и сила сокращения мышцы, тем выше амплитуда ее ЭМГ. Это связано с увеличением частоты нервных импульсов, вовлечением большего числа ДЕ в мышце и синхронизацией их активности. Современная многоканальная аппаратура позволяет производить одновременную регистрацию ЭМГ многих мышц на разных каналах. При выполнении спортсменом сложных движений можно видеть на полученных ЭМГ кривых не только характер активности отдельных мышц, но и оценить моменты и порядок их включения или выключения в различные фазы двигательных актов. Записи ЭМГ, полученные в естественных условиях двигательной деятельности, можно передавать к регистрирующей аппаратуре по телефону или радиотелеметрически. Анализ частоты, амплитуды и формы ЭМГ (например, с помощью специальных компьютерных программ) позволяет получить важную информацию об особенностях техники выполняемого спортивного упражнения и степени ее освоения обследуемым спортсменом.

Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночного

Рис. 13. Электромиограмма мышц-антагонистов при циклической работе

По мере развития утомления при той же величине мышечного усилия амплитуда ЭМГ нарастает. Это связано с тем, что снижение сократительной способности утомленных ДЕ компенсируется нервными центрами вовлечением в работу дополнительных ДЕ, т. е. путем увеличения количества активных мышечных волокон. Кроме того, усиливается синхронизация активности ДЕ, что также повышает амплитуду суммарной ЭМГ.

5.4. монофункциональные основы мышечной силы

Движение является результатом взаимодействия внутренних и внешних сил, развиваемых в опорно-двигательном аппарате, – активных (возникающих при сокращении или напряжении мышцы во время ее возбуждения) и пассивных (упругое напряжение при растяжении мышцы, сопротивление мышцы и ее сухожилия).

Сила мышцы зависит от ряда морфологических и физиологических факторов: количества и свойств мышечных волокон в мышце, исходной длины мышцы, характера нервных импульсов, механических условий действия мышцы на кости скелета.

Сила мышцы является суммой силы отдельных ее мышечных волокон. Подсчитано, что 1 одиночное мышечное волокно икроножной мышцы развивает напряжение 100–200 мг, 1 ДЕ икроножной мышцы человека содержит около 2000 мышечных волокон и развивает напряжение 200–400 г, 1 икроножная мышца содержит около 1000 ДЕ и развивает напряжение 200–400 кг.

Большое значение имеет анатомическое строение мышцы. В параллельно-волокнистых и веретенообразных мышцах (камбаловидная мышца и др.) сила мышц тем больше, чем больше ее анатомический поперечник, т. е. площадь поперечного сечения целой мышцы. В перистых мышцах (двуглавая мышца и др.) физиологический поперечник, т. е. площадь поперечного сечения всех мышечных волокон, гораздо больше, чем ее анатомический поперечник. В такой мышце упаковано значительно больше мышечных волокон и соответственно больше ее сила.

На силу сокращения мышцы влияет ее исходная длина, так как от нее зависит возможное количество поперечных мостиков между актином и миозином. Предполагают, что в каждом цикле присоединения-отсоединения поперечных мостиков расходуется энергия 1 молекулы АТФ на 1 поперечный мостик. Следовательно, чем больше образуется в мышечном волокне актино-миозиновых мостиков, тем выше скорость расщепления АТФ, больше тяга сократительных белков и соответственно больше развиваемая мышцей сила.

Наибольшее количество актино-миозиновых контактов образуется при небольшом растяжении мышцы до некоторой оптимальной длины. При значительном растяжении саркомера нити актина далеко расходятся в стороны и практически не контактируют с расположенным в средней части саркомера миозином. В случае же резкого уменьшения длины саркомера нити актина в центре перекрывают друг друга, препятствуя контактам с миозином и также уменьшая число образуемых мостиков. В связи с этими особенностями взаимодействия сократительных белков наибольшая сила мышцы проявляется при некотором ее предварительном растяжении.

Одной из важнейших характеристик скелетных мышц, влияющих на силу сокращения, является состав (композиция) мышечных волокон. Различают три типа мышечных волокон – медленные неутомляемые (I типа), быстрые неутомляемые или промежуточные (II-а типа) и быстрые утомляемые (II – б типа).

Медленные волокна (I типа), их обозначают также SO – Slow Oxydative (англ. – «медленные окислительные»), – это выносливые (неутомляемые) и легко возбудимые волокна, с богатым кровоснабжением, большим количеством митохондрий, запасов миоглобина и с использованием окислительных процессов энергообразования (аэробные). Их у человека в среднем 50 %. Они легко включаются в работу при малейших напряжениях мышц, очень выносливы, но не обладают достаточной силой. Чаще всего они используются при поддержании ненагрузочной статической работы, например при сохранении позы.

Источник

Почему амплитуда суммированного сокращения больше чем одиночного

Каждый мотонейрон, аксон которого покидает спинной мозг, иннервирует много мышечных волокон, количество которых зависит от типа мышцы. Все мышечные волокна, иннервируемые одиночным нервным волокном, называют моторной единицей. В целом небольшие быстрореагирующие мышцы, управление которыми требует высокой точности, имеют большее количество нервных волокон на меньшее число мышечных волокон (например, в некоторых мышцах гортани на каждую моторную единицу приходится всего 2-3 мышечных волокна). Напротив, в крупных мышцах, не требующих тонкого контроля, например в камбаловидной мышце, в состав моторной единицы могут входить нескольких сотен мышечных волокон. Средний показатель для всех мышц тела: приблизительно 80-100 мышечных волокон на моторную единицу.

В мышце волокна каждой моторной единицы не собираются в единый пучок, но частично заходят в другие моторные единицы в виде микропучков из 3-15 волокон. Такое переплетение позволяет отдельным моторным единицам при сокращении поддерживать друг друга, а не вести себя как совершенно обособленные сегменты.

Мышечные сокращения разной силы. Суммация силы. Суммация означает сложение отдельных одиночных сокращений, ведущее к увеличению интенсивности общего сокращения мышцы. Суммация осуществляется двумя путями: (1) путем увеличения числа моторных единиц, сокращающихся одновременно, что называют суммацией сокращений многих волокон; (2) путем увеличения частоты сокращений, что называют временной (частотной) суммацией, которая может привести к тетанизации.

Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть фото Почему амплитуда суммированного сокращения больше чем одиночного. Смотреть картинку Почему амплитуда суммированного сокращения больше чем одиночного. Картинка про Почему амплитуда суммированного сокращения больше чем одиночного. Фото Почему амплитуда суммированного сокращения больше чем одиночногоВременная (частотная) суммация и тетанизация.

Суммация сокращений многих волокон. Когда центральная нервная система посылает к мышце слабый сигнал, стимулируются преимущественно более мелкие, а не крупные двигательные единицы. По мере увеличения силы сигнала начинают возбуждаться все более крупные моторные единицы, вплоть до самых крупных, часто имеющих сократительную силу, превышающую до 50 раз силу мельчайших единиц. Этот процесс называют принципом размера. Он важен, поскольку во время слабых сокращений мышцы позволяет изменять силу сокращения постепенно, «шаг» за «шагом». При необходимости развития сил большой величины «шаги» постепенно возрастают. Принцип размера основан на том, что более мелкие двигательные единицы управляются тонкими двигательными нервными волокнами, т.е. аксонами небольших мотонейронов спинного мозга, которые по сравнению с крупными мотонейронами более возбудимы и, естественно, возбуждаются первыми.

Другое важное свойство суммации сокращений многих мышечных волокон: разные двигательные единицы управляются спинным мозгом асинхронно, поэтому в сокращение вовлекаются поочередно, одна за другой, что обеспечивает плавное сокращение даже при низких частотах нервных сигналов.

На рисунке показаны принципы временной суммации и тетанизации. Слева видны одиночные сокращения, возникающие одно за другим при низкой частоте стимуляции. При увеличении частоты стимуляции наступает момент, когда каждое новое сокращение возникает раньше, чем завершится предшествующее. В результате второе сокращение частично суммируется с первым, и с увеличением частоты стимуляции общая сила сокращения постепенно возрастает. Когда частота достигает критического уровня, последовательные сокращения становятся такими быстрыми, что сливаются друг с другом, и сокращение целой мышцы выглядит совершенно гладким и непрерывным, как видно на рисунке. Этот процесс называют тетанизацией. При дальнейшем небольшом увеличении частоты сила сокращения достигает своего максимума, и любое дополнительное увеличение частоты за эти пределы больше не ведет к усилению сокращения. Тетанизация происходит в связи с тем, что в саркоплазме мышечных волокон сохраняется достаточное количество кальция даже между потенциалами действия, поэтому полное состояние сокращения поддерживается без возможности какого-либо расслабления между потенциалами действия.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *