физическое поле это в физике
Поле (физика)
Из Википедии — свободной энциклопедии
По́ле в физике — физический объект, классически описываемый математическим скалярным, векторным, тензорным, спинорным полем (или некоторой совокупностью таких математических полей), подчиняющимся динамическим уравнениям (уравнениям движения, называемым в этом случае уравнениями поля или полевыми уравнениями — обычно это дифференциальные уравнения в частных производных). Другими словами, физическое поле представляется некоторой динамической физической величиной [1] (называемой полевой переменной [2] ), определённой во всех [3] точках пространства (и принимающей, вообще говоря, разные значения в разных точках пространства, к тому же меняющейся со временем [4] ). [ источник не указан 2863 дня ]
В квантовой теории поля — полевая переменная может рассматриваться формально подобно тому, как в обычной квантовой механике рассматривается пространственная координата, и полевой переменной сопоставляется квантовый оператор соответствующего названия.
Физическое поле, таким образом, можно характеризовать как распределенную динамическую систему, обладающую бесконечным числом степеней свободы.
Роль полевой переменной для фундаментальных полей часто играет потенциал (скалярный, векторный, тензорный), иногда — величина, называемая напряжённостью поля. (Для квантованных полей в некотором смысле обобщением классического понятия полевой переменной также является соответствующий оператор).
Динамика таких полей также описывается дифференциальными уравнениями в частных производных, и исторически первыми, начиная с XVIII века, в физике рассматривались именно такие поля.
Современная концепция физического поля выросла из идеи электромагнитного поля, впервые осознанной в физически конкретном и сравнительно близком к современному виде Фарадеем, математически же последовательно реализованной Максвеллом — изначально с использованием механической модели гипотетической сплошной среды — эфира, но затем вышедшей за рамки использования механической модели.
Понятие поля в физике
Когда в пространстве распределена какая-либо физическая величина, то говорят, что в пространстве задано поле этой величины.
Если распределена скалярная величина, то поле называют скалярным. Такое поле математики описывают скалярной функцией.
А если в области распределена векторная величина, тогда поле называется векторным. Его описывают с помощью векторной функции.
Скалярное поле
К примеру, мы можем измерять температуру зимой в различных точках комнаты.
При этом, чем ближе к батарее центрального отопления и чем выше к потолку, тем выше будет температура. А в точках у пола и в отдалении от нагретой батареи температура будет ниже на несколько градусов.
Рассмотрим трехмерное пространство (рис. 1) и какую-нибудь точку, расположенную в этом пространстве. Обозначим точку большой латинской буквой, например P.
Этой точке поставлены в соответствие три числа x, y, z, лежащие на осях Ox, Oy, Oz. Такие числа называют координатами точки. Обычно математики записывают координаты точки рядом с ее названием: \(\large P\left( x ; y ; z \right)\).
Мы можем дополнительно поставить в соответствие этой точке четвертое число – температуру t в градусах Цельсия (рис. 2).
Составим таблицу, в которой будут содержаться координаты точек пространства и температура в этих точках. Так мы упорядочим информацию о распределении температуры в комнате.
По такой таблице можно построить графики, на которых изобразим, как именно температура будет зависеть от какой-либо координаты пространства.
Эта таблица и графики содержат информацию о поле температур.
Так как распределенная по комнате температура является скалярной величиной, то поле температуры называют скалярным. А таблица задает скалярную функцию, описывающую распределение температуры в комнате.
Такая функция связывает координаты точки и значение физической величины – температуры в этой точке.
Это обычная функция, наподобие тех, с которыми вам приходилось решать примеры на школьной математике. Только эта функция зависит не от одной переменной x, а от трех переменных величин — координат x, y, z точек, расположенных в трехмерном пространстве.
\[\large \varphi = f \left( x ; y ; z \right)\]
А четвертая величина – температура, будет являться значением этой функции. Наподобие числа «y» для функции одной переменной «x».
Векторное поле
Предположим, что в углу комнаты лежит большой магнит. А мы ходим по комнате со шнурком, к одному концу которого привязан железный гвоздь. Второй конец шнурка держим в горизонтально вытянутой руке.
Расхаживая по комнате, мы заметим, что в некоторой области комнаты шнурок с гвоздем отклоняется от вертикального положения в сторону магнита.
Чем ближе мы подходим к магниту, тем сильнее он притягивает гвоздь. Тем больше усилий нужно приложить, чтобы удержать шнурок в руке.
Такие поля, наподобие поля, созданного магнитом, называют силовыми полями.
Поля силовые – это векторные поля, так как распределенная по комнате и измеренная в различных точках комнаты сила – это векторная величина.
Теперь каждой точке комнаты мы можем поставить в соответствие не только координаты точки, но и вектор F силы, действующей на гвоздь в этой точке.
Составим таблицу и запишем в нее координаты каждой выбранной точки комнаты и координаты вектора силы, с которой магнит действует на гвоздь в этой точке.
У вектора силы в каждой отдельной точке будут свои характеристики — длина и направление. Поэтому, таблица, содержащая информацию о силе в каждой точке комнаты, будет содержать 6 строк. Три строки – это координаты точки, и три строки – координаты вектора.
Такая таблица задает функцию, которую математики называют сокращенно «вектор-функцией».
Вектор-функцию, описывающую векторное поле, можно обозначить так:
\(\large \overrightarrow \) – вектор-функция. Подробнее можно записать ее таким способом:
\[\large \boxed < \overrightarrow= A_
\( A_
Обычно в школе такие функции не изучают. Но вы теперь знаете, что кроме обычных — скалярных функций, существуют вектор-функции.
Из записи видно, что векторная функция отличается от скалярной тем, что имеет три компоненты (части). Каждая компонента (часть) зависит от трех координат точки P пространства.
Какое поле называют стационарным
Многие процессы, происходящие вокруг нас, изменяются во времени. Например, температура в полдень жаркого летнего дня будет выше, чем температура перед закатом этого же дня. Иными словами, скалярная величина – температура воздуха на улице, а значит и, ее поле, изменяются со временем.
В противоположность этому, поле температуры в закрытом помещении зимой изменяться не будет. Конечно, если батареи центрального отопления будут иметь одинаковую температуру в течение продолжительного времени.
Величины и процессы, изменяющиеся во времени, называют нестационарными. А стабильные, не изменяющиеся с течением времени величины – стационарными.
Если поле не изменяется с течением времени, его называют стационарным. А если изменяется – тогда нестационарным.
Все ли поля можно почувствовать
Мы можем чувствовать поле температур, благодаря тому, что на коже у нас содержатся особые рецепторы, способные воспринимать температуру окружающей среды.
Однако, не все поля люди могут ощущать. Например, мы невосприимчивы к магнитным и электрическим полям, потому, что у нас нет органа, способного улавливать их изменения.
Как же тогда мы узнали о электрических и магнитных полях? Мы нашли тех, кто может чувствовать эти поля.
Некоторые рыбы способны улавливать изменение электрического поля. Например, электрический скат (рис. 3) улавливает электрические сигналы и благодаря этому прекрасно ориентируется. У него есть для этого специальные органы, в отличие от человека. Отдельные скаты способны генерировать электрические разряды напряжением до 200 вольт.
Электрический угорь (рис. 4) может достигать 2,5 метров в длину. Он способен не только улавливать электрические поля, но и генерировать мощные электрические разряды напряжением до 860 Вольт и силой тока до 1 Ампера. Использует их, преимущественно охотясь на добычу, или спасаясь от других хищников.
Способность улавливать изменение электрического поля называют электрорецепцией. Ее обнаружили у некоторых рыб, амфибий и млекопитающих – утконоса и ехидны. Она используется для охоты, общения и улавливания магнитного поля земли.
Перелетные птицы, например, журавли (рис. 5), содержат орган, способный улавливать изменение магнитного поля Земли. Благодаря этому они ориентируются в пространстве во время перелетов в теплые края.
Как мы можем обнаружить поле без помощи животных?
Для обнаружения электрического поля мы будем использовать электрический заряд. Потому, что поле действует электрической силой на заряды, помещенные в него.
А, чтобы обнаружить магнитное поле, мы можем воспользоваться небольшим магнитом, или железным предметом. Потому, что магнитное поле будет воздействовать на них.
Как обозначают поля на рисунках
Рассмотрим часть карты мира. Обратим внимание на то, что области частей карты закрашены различными цветовыми оттенками (рис. 6).
Так же, в одном из углов карты можно заметить разноцветную табличку, наподобие, нарисованной поверх карты на рисунке. На ней нарисована шкала высот и глубин и, рядом с каждым оттенком записаны цифры, обозначающие высоту или глубину в метрах.
Примечание: Высоты и глубины на местности обозначают с помощью областей, имеющих различные цвета, для наглядности. Чем ближе к красному цвету, тем выше, а чем ближе к фиолетовому, тем глубже.
По краям цветовых областей проведены тонкие границы, они ограничивают области, имеющие одинаковый уровень высот. Такие границы называют линиями уровня.
Высота или уровень – это скалярная величина. Поэтому, мы можем сказать, что с помощью цветных областей и линий на их границах задано поле, описывающее распределение высот на поверхности Земли.
Скалярное поле можно изобразить с помощью линий уровня.
Вспомним теперь пример с магнитом и гвоздиком. В каждой точке комнаты можно нарисовать вектор силы, с которой магнит притягивает железный гвоздь (рис. 7).
Чем ближе к магниту, тем больше сила притяжения, тем длиннее векторы. Можно обратить внимание, что векторы силы как бы располагаются вдоль некоторых линий. Они дополнительно проведены пунктиром на рисунке. Видно, так же, что эти линии искривлены.
Такие линии, вдоль которых выстаиваются векторы силы, называют силовыми линиями. Силовые поля – векторные.
Векторные поля изображают с помощью силовых линий. Вдоль таких линий выстраиваются векторы сил. Эти линии имеют и другие названия.
Связь между скалярными и векторными полями
Скалярному полю можно поставить в соответствие векторное поле. Вернемся к примеру обозначения высот на карте (рис. 6). Мы знаем, что на карте имеются области, на которых присутствуют резкие перепады высот. На таких участках есть несколько градаций цветовых оттенков, а области, имеющие различные цвета, в таких местах располагаются чаще.
Чтобы обозначить резкие перепады высот, придумали использовать специальный вектор – вектор градиента. Он описывает, как быстро изменяется скалярная величина – например, высота на карте местности.
Этот вектор обозначают так:
Примечание: Градиент, от слова градация – его можно перевести, как сорт, или изменчивость. Например, градации яркости имеют различные оттенки серого цвета. В школьной физике вектор градиента обычно не рассматривают.
Градиент направлен в сторону наибольшего возрастания физической величины. А длина вектора градиента равна скорости, с которой возрастает физ. величина в этом направлении.
На разных участках карты присутствуют различные перепады высот, где-то высота изменяется быстрее, а где-то — медленнее. Значит, в различных областях местности вектор градиента будет иметь разную длину.
А если в пространстве распределена векторная величина, то говорят, что задано поле такой физ. величины.
Так, мы получили два связанных поля – скалярное поле высоты и векторное поле градиента, описывающее скорость изменения высоты в различных областях местности.
Для примера, описывая электрическое поле мы будем использовать две величины – скалярную — потенциал электростатического поля и векторную – напряженность электрического поля. Эти величины связаны между собой с помощью вектора градиента.
Однородные и неоднородные поля
Поле однородное, если в каждой точке пространства оно имеет одно и то же значение распределенной величины.
Например, температура во всех точках пространства имеет одно и то же значение. Или, электрическое поле действует на помещенный в него заряд во всех точках пространства с одной и той же силой.
Однородные силовые поля изображают прямыми линиями, расстояние между которыми не изменяется (рис. 8а).
Распределенные заряды могут создавать однородные поля. Электрическое поле, существующее между двумя заряженными параллельными плоскостями, однородное.
Если же в разных точках пространства поле действует на пробный заряд с различными силами, тогда поле называют неоднородным. Линии неоднородных полей кривые и расстояние между ними изменяется (рис. 8б).
Поле неоднородное, если в разных точках пространства оно имеет различные значения распределенной величины.
Например, поле магнита – это неоднородное поле, потому, что сила воздействия магнита возрастает по мере приближения к нему. Электрическое поле вокруг точечного заряда, так же неоднородное, потому, что сила воздействия на пробный заряд возрастает с уменьшением расстояния до заряда, создавшего поле.
По силовым линиям можно узнать величину поля. Чем гуще располагаются линии поля в какой-либо области, тем больше величина поля в этой области.
Примеры скалярных полей
Это поля распределения скалярных величин — плотности, давления, гравитационного и электростатического потенциалов, температуры, высот и т. п.
Поле плотности зарядов
Когда в трехмерном пространстве распределены заряды, мы можем говорить о плотности такого распределения. Плотность зарядов – величина скалярная. Ее распределение задает скалярное поле, описывается скалярной функцией.
Поле плотности тел
Если в пространстве распределена масса, то существует плотность распределения массы. Плотность тела – это скалярная функция, она задает скалярное поле.
Поле давления звуковой волны
Пусть в газе или жидкости распределяется звуковая волна. Звуковые волны являются поперечными волнами. По мере распространения волны в газе или жидкости возникают области сгущения и разряжения. Потому, что колеблется давление. Оно в различных точках пространства отличается. То есть, оно зависит от положения точки в пространстве. Когда скалярная величина – давление, распределена в пространстве, ее распределение описывается скалярной функцией. Эта функция задает скалярное поле.
Поле гравитационного потенциала — распределение потенциальной энергии
По закону всемирного тяготения, тела, имеющие массу, взаимно притягиваются. А если есть взаимодействие, то имеется потенциальная энергия такого взаимодействия. Распределение потенциальной энергии задается скалярной функцией, эта функция описывает скалярное поле и называется гравитационным потенциалом.
Поле распределения электрического потенциала
Заряды, находящиеся на некотором расстоянии, притягиваются, или отталкиваются. Значит, существует потенциальная энергия их взаимодействия. Распределение энергии описывается потенциалом системы заряженных частиц. Электрический потенциал является скалярной функцией, описывающей скалярное поле.
Примеры векторных полей
Это поля распределения векторных величин – сил, скоростей и т. д.
Гравитационное поле сил
Сила всемирного тяготения – это вектор, значит поле, описывающее гравитационное притяжение тел, будет векторным.
Поле скоростей потока жидкости
Когда жидкость течет, одни ее части в потоке двигаются быстрее других. Это значит, что скорости частиц жидкости различаются. Распределение скоростей частиц потока можно описать полем. Скорость – это вектор, значит, поле скоростей потока жидкости – это векторное поле.
Поле Кулоновских сил
Нам известно, что покоящиеся заряды притягиваются, или отталкиваются благодаря Кулоновским силам. Силы такого взаимодействия распределяются в пространстве и задают поле. Это электростатическое поле, оно является векторным полем напряженности.
Поле магнитных сил
Движущиеся заряды взаимодействуют благодаря магнитным полям. Индукция магнитного поля описывает, как сила взаимодействия изменяется в пространстве. Поэтому, индукция магнитного поля является вектор-функцией, задающей векторное магнитное поле.
Примечание: По сути, индукция магнитного поля – это сила, действующая на движущийся заряд со стороны других движущихся зарядов.
Поле (физика)
По́ле в физике — физический объект, классически описываемый математическим скалярным, векторным, тензорным, спинорным полем (или некоторой совокупностью таких математических полей), подчиняющимся динамическим уравнениям (уравнениям движения, называемым в этом случае уравнениями поля или полевыми уравнениями — обычно это дифференциальные уравнения в частных производных). Другими словами, физическое поле представляется некоторой динамической физической величиной [1] (называемой полевой переменной [2] ), определенной во всех [3] точках пространства (и принимающей вообще говоря разные значения в разных точках пространства, к тому же меняющейся со временем [4] ).
В квантовой теории поля — полевая переменная может рассматриваться формально подобно тому, как в обычной квантовой механике рассматривается пространственная координата, и полевой переменной сопоставляется квантовый оператор [5] соответствующего названия.
Физическое поле, таким образом, можно характеризовать как распределенную динамическую систему, обладающую бесконечным числом степеней свободы.
Роль полевой переменной для фундаментальных полей часто играет потенциал (скалярный, векторный, тензорный), иногда — величина, называемая напряжённостью поля. (Для квантованных полей в некотором смысле обобщением классического понятия полевой переменной также является соответствующий оператор).
Современная концепция физического поля выросла из идеи электромагнитного поля, впервые осознанной в физически конкретном и сравнительно близком к современному виде Фарадеем, математически же последовательно реализованной Максвеллом — изначально с использованием механической модели гипотетической сплошной среды — эфира, но затем вышедшей за рамки использования механической модели.
Содержание
Фундаментальные поля
Среди полей в физике выделяют так называемые фундаментальные. Это поля, которые, согласно с полевой парадигмой современной физики, составляют основу физической картины мира, все остальные поля и взаимодействия из них выводятся. Включают два основных класса взаимодействующих друг с другом полей:
Существуют теории (например, теория струн, различные другие теории объединения), в которых роль фундаментальных полей занимают несколько другие, еще более фундаментальные с точки зрения этих теорий, поля или объекты (а нынешние фундаментальные поля появляются или должны появляться в этих теориях в некотором приближении, как «феноменологическое» следствие). Однако пока такие теории не являются достаточно подтвержденными или общепринятыми.
История
Поля, соответствующие слабому взаимодействию и сильному взаимодействию, (играющие важную роль в ядерной физике ядерных и физике частиц; последнее — в числе прочего в объяснении ядерных сил) открыты гораздо позднее, поскольку практически проявляются лишь в физике атомного ядра и частиц, при таких энергиях и расстояниях, которые в принципе относятся к области квантовых теорий.
Тем не менее, в принципе (несмотря на то, что не для всех из них это легко непосредственно обнаружить), все четыре упомянутые поля проявляют себя как посредники при взаимодействии заряженных (различными видами зарядов) тел (частиц), перенося это взаимодействие с конечной скоростью (скоростью света), при этом интенсивность (сила) взаимодействия определяется, кроме положения и движения тел, их зарядами: массой (гравитационным зарядом) для гравитационного поля, электрическим зарядом для электромагнитного и т. д.
Еще одним решительным моментом в завоевании полевой концепцией признания физиков стало экспериментальное подтверждение теории Максвелла в 1887 году Генрихом Герцем, получившим прямое экспериментальное доказательство существования предсказанных Максвеллом электромагнитных волн (что, кроме прочего, позволило в итоге присоединить оптику, бывшую до этого независимой областью физики, к электромагнитной теории, а это было очень существенным продвижением в направлении увеличения внутренней связности физики).
С другой стороны, по мере развития квантовой механики, становилось всё более ясно, что вещество (частицы) обладает свойствами, которые теоретически присущи именно полям.
Современное состояние
Таким образом, оказалось, что физическая картина мира может быть сведена в своем фундаменте к квантованным полям и их взаимодействию.
В какой-то мере, главным образом в рамках формализма интегрирования по траекториям и диаграмм Фейнмана, произошло и противоположное движение: поля стало можно в заметное мере представить как почти классические частицы (точнее — как суперпозицию бесконечного количества движущихся по всем мыслимым траекториям почти классических частиц), а взаимодействие полей друг с другом — как рождение и поглощение частицами друг друга (тоже с суперпозицией всех мыслимых вариантов такового). И хотя этот подход очень красив, удобен и позволяет во многом психологически вернуться представлению о частице как о старой доброй классической частице, имеющей вполне определенную траекторию, он, тем не менее, не может отменить полевой взгляд на вещи и даже не является полностью симметричной альтернативой ему (а поэтому всё же ближе к красивому, психологически и практически удобному, но всё же всего лишь формальному приему, чем к полностью самоcтоятельной концепции). Дело тут в двух ключевых моментах:
Таким образом, можно заключить, что подход интегрирования по траекториям есть хотя и очень психологически удобная (ведь, скажем, точечная частица с тремя степенями свободы гораздо проще, чем бесконечномерное поле, которое ее описывает) и доказавшая практическую продуктивность, но всё же лишь некая переформулировка, пусть и довольно радикальная, полевой концепции, а не ее альтернатива.
И хотя на словах на этом языке всё выглядит очень «корпускулярно» (например: «взаимодействие заряженных частиц объясняются обменом другой частицей — переносчиком взаимодействия» или «взаимное отталкивание двух электронов обусловлено обменом между ними виртуальным фотоном»), однако за этим стоят такие типично полевые реальности, как распространение волн, пусть и достаточно хорошо спрятанные ради создания эффективной схемы вычислений, да во многом и давая дополнительные возможностеи качественного понимания.
В настоящее время (2012 год) фундаментальными бозонными (калибровочными) полями считаются несколько полей, связанных с электрослабым, сильным и гравитационным взаимодействиями. К фундаментальным фермионным полям относятся спинорные поля нескольких «поколений» лептонов и кварков.
Список фундаментальных полей
В рамках Стандартной модели в качестве фундаментальных выступают следующие поля
Фундаментальные фермионные поля
Каждому фундаментальному фермиону (каждому типу кварков и каждому типу лептонов) в рамках Стандартной модели соответствует свое поле, математически представляемое спинорным полем.
Фундаментальные бозонные поля (поля — переносчики фундаментальных взаимодействий)
Эти поля в рамках стандартной модели являются калибровочными полями. Известны такие их типы:
Гипотетические поля
Гипотетическими в широком смысле можно считать любые теоретические объекты (например, поля), которые описываются теориями, не содержащими внутренних противоречий, явно не противоречащими наблюдениям и способными в то же время дать наблюдаемые следствия, позволяющие сделать выбор в пользу этих теорий по сравнению с теми, которые приняты сейчас. На практике (чтобы отсечь необозримое количество потенциально возможных, но бесполезных теорий) применяют еще принцип фальсифицируемости. Ниже мы будем говорить (и это в целом соответствует обычному пониманию термина) в основном о гипотетичности в этом более узком и строгом смысле, подразумевающем обоснованность и фальсифицируемость предположения, которое мы называем гипотезой.
Вопрос о том, что следует считать критерием, позволяющим перенести некое конкретное поле из разряда гипотетических в разряд реальных, довольно тонок, поскольку подтверждения той или иной теории и реальности тех или иных объектов, в ней содержащихся, бывают зачастую более или менее косвенными. В этом случае дело сводится обычно к какому-то разумному соглашению научного сообщества (члены которого на более или менее детально сознают, о какой степени подтвержденности на самом деле идет речь).
Даже в теориях, считающихся достаточно хорошо подтвержденными, находится место гипотетическим полям (тут речь идет о том, что разные части теории проверены с разной степенью тщательности, и некоторые поля, играющие в них в принципе важную роль, пока не проявились в эксперименте достаточно определенно, то есть пока выглядят именно как гипотеза, придуманная для тех или иных теоретических целей, в то время как другие поля, фигурирующие в той же теории, изучены уже достаточно хорошо, чтобы говорить о них как о реальности).
Примером такого гипотетического поля является поле Хиггса, являющееся важным в Стандартной модели, остальные поля которой отнюдь не являются гипотетическими, а сама модель, пусть и с неизбежными оговорками, считается описывающей реальность (по крайней мере, до той степени, как реальность известна).
Существует множество теорий, содержащих поля, которые (пока) никогда не наблюдались, а иногда сами же эти теории дают такие оценки, что их гипотетические поля по-видимому (из-за слабости их проявления, следующей из самой теории) и не могут в принципе быть обнаружены в обозримом будущем (например, торсионное поле). Такие теории (если не содержат, кроме практически непроверяемых, еще и достаточного количества легче проверяемых следствий) не рассматриваются как представляющие практический интерес, если только не всплывет какой-то нетривиальный новый способ их проверки, позволяющий обойти очевидные ограничения. Иногда же (как, например, во многих альтернативных теориях гравитации — например, поле Дикке) вводятся такие гипотетические поля, о силе проявления которых сама теория вообще не может ничего сказать (например, константа связи этого поля с другими неизвестна и может быть как довольно большой, так и сколь угодно малой); с проверкой таких теорий обычно также не торопятся (поскольку таких теорий много, а своей полезности каждая из них ничем не доказала, и даже формально нефальсифицируема), за исключением случаев, когда какая-то из них не начинает по каким-то причинам казаться перспективной для разрешения каких-то текущих затруднений (впрочем, от отсеивания теорий на основании нефальсифицируемости — особенно из-за неопределенных констант — тут иногда отказываются, т.к. серьезная добротная теория иногда может быть проверена в надежде, что ее эффект обнаружится, хотя гарантий этого и нет; особенно это верно, когда теорий-кандидатов вообще немного или некоторые из них выглядят особенно фундаментально интересными; также — в случаях, когда можно проверять теории широкого класса все сразу по известным параметрам, не тратя специальных усилий на проверку каждой в отдельности).
Следует также заметить, что принято называть гипотетическими лишь такие поля, которые совсем не имеют наблюдаемых проявлений (или имеют их недостаточно, как в случае с полем Хиггса). Если же существование физического поля твердо установлено по его наблюдаемым проявлениям, и речь идет лишь об улучшении его теоретического описания (например, о замене ньютоновского гравитационного поля на поле метрического тензора в ОТО), то говорить о том или другом как о гипотетических обычно не принято (хотя для ранней ситуации в ОТО можно было говорить о гипотетическом характере тензорной природы гравитационного поля).
В заключение упомянем о таких полях, сам тип которых достаточно необычен, т.е. теоретически вполне мыслим, но никакие поля подобных типов никогда не наблюдался на практике (а в некоторых случаях на ранних этапах развития их теории могли возникали и сомнения в ее непротиворечивости). К таким, прежде всего, следует отнести тахионные поля. Собственно, тахионные поля можно назвать скорее лишь потенциально гипотетическими (то есть не достигающими статуса обоснованного предположения), т.к. известные конкретные теории, в которых они играют более или менее существенную роль, например, теория струн,