расчет стен на прочность
Расчет кирпичной кладки на прочность
Несущими называются стены, которые воспринимают нагрузку от опирающихся на них плит перекрытий, покрытий, балок и т.д.
Также следует учесть марку кирпича по морозостойкости. Так как каждый строит дом для себя, как минимум на сто лет, то при сухом и нормальном влажностном режиме помещений принимается марка (Мрз) от 25 и выше.
При строительстве дома, коттеджа, гаража, хоз.построек и др.сооружений с сухим и нормальным влажностным режимом рекомендуется применять для наружных стен пустотелый кирпич, так как его теплопроводность ниже, чем у полнотелого. Соответственно, при теплотехническом расчете толщина утеплителя получится меньше, что сэкономит денежные средства при его покупке. Полнотелый кирпич для наружных стен необходимо применять только при необходимости обеспечения прочности кладки.
Армирование кирпичной кладки допускается только лишь в том случае, когда увеличение марки кирпича и раствора не позволяет обеспечить требуемую несущую способность.
Пример расчета кирпичной стены.
Исходные данные: Рассчитать стену первого этажа двухэтажного коттеджа на прочность. Стены выполнены из кирпича М75 на растворе М25 толщиной h=250мм, длина стены L=6м. Высота этажа H=3м.
Выбор расчетного сечения.
В глухих стенах за расчетное принимается сечение I-I на уровне низа перекрытия с продольной силой N и максимальным изгибающим моментом М. Часто опасным бывает сечение II-II, так как изгибающий момент чуть меньше максимального и равен 2/3М, а коэффициенты mg и φ минимальны.
В стенах с проемами сечение принимается на уровне низа перемычек.
Давайте рассмотрим сечение I-I.
Из прошлой статьи Сбор нагрузок на стену первого этажа возьмем полученное значение полной нагрузки, которая включает в себя нагрузки от перекрытия первого этажа P1=1,8т и вышележащих этажей G=G п +P 2 +G 2= 3,7т:
Плита перекрытия опирается на стену на расстоянии а=150мм. Продольная сила P1 от перекрытия будет находиться на расстоянии а / 3 = 150 / 3 = 50 мм. Почему на 1/3? Потому что эпюра напряжений под опорным участком будет в виде треугольника, а центр тяжести треугольника как раз находится на 1/3 длины опирания.
Нагрузка от вышележащих этажей G считается приложенной по центру.
Так как нагрузка от плиты перекрытия (P1) приложена не по центру сечения, а на расстоянии от него равном:
Тогда эксцентриситет продольной силы N составит:
Так как несущая стена толщиной 25см, то в расчете следует учесть величину случайного эксцентриситета eν=2см, тогда общий эксцентриситет равен:
Прочность кл адки внецентренно сжатого элемента определяется по формуле:
Коэффициенты mg и φ1 в рассматриваемом сечении I-I равны 1.
ω = 1 + e0/h = 1 + 0,045/0,25 = 1,18 ≤ 1,45 условие выполняется
Несущая способность кладки равна:
Прочность кладки обеспечена.
Статья была для Вас полезной?
Как рассчитать стены из кладки на устойчивость
Разберемся с вопросом устойчивоcти стен.
Первый вопрос, возникающий у «непосвященного» человека: ну куда может деться стена? Найдем ответ с помощью аналогии. Возьмем книгу в твердом переплете и поставим ее на ребро. Чем больше формат книги, тем меньше будет ее устойчивость; с другой стороны, чем книга будет толще, тем лучше она будет стоять на ребре. Со стенами та же ситуация. Устойчивость стены зависит от высоты и толщины.
Рассмотрим вопросы определения устойчивости стен на примерах.
Пример 1. Дана перегородка из газобетона марки М25 на растворе марки М4 высотой 3,5 м, толщиной 200 мм, шириной 6 м, не связанная с перекрытием. В перегородке дверной проем 1х2,1 м. Необходимо определить устойчивость перегородки.
Находим коэффициенты k из таблиц ы 29:
Окончательно β = 1,26*9,8 = 12.3.
Пример 2. Дана наружная ненесущая стена из облегченной кладки из кирпича марки М50 на растворе марки М25. Высота стены 3 м, толщина 0,38 м, длина стены 6 м. Стена с двумя окнами размером 1,2х1,2 м. Необходимо определить устойчивость стены.
Находим коэффициенты k из таблиц ы 29:
Окончательно β = 0,94*15,4 = 14,5.
Еще полезные статьи:
Внимание! Для удобства ответов на ваши вопросы создан новый раздел «БЕСПЛАТНАЯ КОНСУЛЬТАЦИЯ».
профили арматуру не заменят
Вернёмся пока к стенам, тут вычитал ещё интересный вариант tilt-up
на фундаменте отливается прямо стена с утелпением сразу (в утеплении есть углубления для армирования, т.е. слой бетона не везде одинаковый, как бы та же ребристая структура)
потом это ставится уже краном (свариваются, скручиаются выносы арматуры) а стыки и углы монолитятся и утепляются отдельно (в стыках из плиты и потом в перекрытие отдельно арматура закладывается)
Как Вам такая технология? Несущая стена получится 150мм с утолщениями до 250мм из керазитобетона M50 с умеренным армированием
а значит будут проблемы в растянутой зоне плиты и в местах анкеровки арматуры.
Для стен же, тем более для одноэтажного дома, керамзитобетон вполне подходит. Конечно, нужно соблюсти все нормативные требования для лёгких бетонов.
стяжка не армируется
почитал СНИП по легким бетонам, там довольно интересные есть моменты.
1. похоже можно делать керамзитобетон без мелкого наполнителя, я думаю использовать 10-20
2. есть разные сорта керамзита по прочности, и требования для каждой марки керамзитобетона
Расчет кирпичной стены на устойчивость пример. Как рассчитать стены из кладки на устойчивость
Оставьте комментарий 6,950
Разберемся с вопросом устойчивоcти стен.
Первый вопрос, возникающий у «непосвященного» человека: ну куда может деться стена? Найдем ответ с помощью аналогии. Возьмем книгу в твердом переплете и поставим ее на ребро. Чем больше формат книги, тем меньше будет ее устойчивость; с другой стороны, чем книга будет толще, тем лучше она будет стоять на ребре. Со стенами та же ситуация. Устойчивость стены зависит от высоты и толщины.
Рассмотрим вопросы определения устойчивости стен на примерах.
Пример 1. Дана перегородка из газобетона марки М25 на растворе марки М4 высотой 3,5 м, толщиной 200 мм, шириной 6 м, не связанная с перекрытием. В перегородке дверной проем 1х2,1 м. Необходимо определить устойчивость перегородки.
значит k = k 1 k 3 = 1,4*0,9 = 1,26.
Окончательно β = 1,26*9,8 = 12.3.
Пример 2. Дана наружная ненесущая стена из облегченной кладки из кирпича марки М50 на растворе марки М25. Высота стены 3 м, толщина 0,38 м, длина стены 6 м. Стена с двумя окнами размером 1,2х1,2 м. Необходимо определить устойчивость стены.
Находим коэффициенты k из таблиц ы 29:
значит k = k 1 k 2 = 1,2*0,78 = 0,94.
Окончательно β = 0,94*15,4 = 14,5.
Найдем отношение высоты перегородки к толщине: H /h = 3/0,38 = 7,89
при центральном сжатии
Проектируется: Терраса размерами 5х8 м. Три колонны (одна посредине и две по краям) из лицевого пустотелого кирпича сечением 0,25х0,25 м. Расстояние между осями колонн 4 м. Марка кирпича по прочности М75.
N с кровли = (180·1,25 +75)·5·8/4 = 3000 кг или 3 тонны
Так как действующие нагрузки от материала перекрытия и от людей, восседающих на террасе, мебели и др. пока не известны, но железобетонная плита точно не планируется, а предполагается, что перекрытие будет деревянным, из отдельно лежащих обрезных досок, то для расчетов нагрузки от террасы можно принять равномерно распределенную нагрузку 600 кг/м², тогда сосредоточенная сила от террасы, действующая на центральную колонну, составит:
N с террасы = 600·5·8/4 = 6000 кг или 6 тонн
Собственный вес колонн длиной 3 м будет составлять:
N с колонны = 1500·3·0,38·0,38 = 649,8 кг или 0,65 тонн
Таким образом суммарная нагрузка на среднюю нижнюю колонну в сечении колонны возле фундамента составит:
N с об = 3000 + 6000 + 2·650 = 10300 кг или 10,3 тонн
Однако в данном случае можно учесть, что существует не очень большая вероятность того, что временная нагрузка от снега, максимальная в зимнее время, и временная нагрузка на перекрытие, максимальная в летнее время, будут приложены одновременно. Т.е. сумму этих нагрузок можно умножить на коэффициент вероятности 0,9, тогда:
N с об = (3000 + 6000)·0.9 + 2·650 = 9400 кг или 9,4 тонн
Расчетная нагрузка на крайние колонны будет почти в два раза меньше:
N кр = 1500 + 3000 + 1300 = 5800 кг или 5,8 тонн
2. Определение прочности кирпичной кладки.
10300/625 = 16,48 кг/см² > R = 12 кгс/см²
Таким образом для обеспечения необходимой прочности колонны нужно или использовать кирпич большей прочности, например М150 (расчетное сопротивление сжатию при марке раствора М100 составит 22·0,8 = 17,6 кг/см²) или увеличивать сечение колонны или использовать поперечное армирование кладки. Пока остановимся на использовании более прочного лицевого кирпича.
3. Определение устойчивости кирпичной колонны.
а) при неподвижных шарнирных опорах l o = Н ;
в) для свободно стоящих конструкций l o = 2Н ;
3. Сделать диафрагму жесткости в плоскости, параллельной плоскости стены. Например по краям выложить не колонны, а скорее простенки. Это также позволит рассматривать и верхнюю и нижнюю опору колонны, как шарнирные, но в этом случае необходимо дополнительно рассчитывать диафрагму жесткости.
Теперь, зная расчетную длину колонны, можно определить коэффициент гибкости:
Теперь, зная значение коэффициента гибкости, можно наконец-то определить коэффициент продольного изгиба по таблице:
При этом упругая характеристика кладки α определяется по таблице:
В итоге значение коэффициента продольного изгиба составит около 0,6 (при значении упругой характеристики α = 1200, согласно п.6). Тогда предельная нагрузка на центральную колонну составит:
N р = m g φγ с RF = 1·0,6·0,8·22·625 = 6600 кг N с об = 9400 кг
Это означает, что сечения 38х38 см для обеспечения устойчивости нижней центральной центрально-сжатой колонны хватает с запасом и даже можно уменьшить марку кирпича. Например, при первоначально принятой марке М75 предельная нагрузка составит:
N р = m g φγ с RF = 1·0,8·0,8·12·1300 = 9984 кг > N с об = 9400 кг
Вроде бы все, но желательно учесть еще одну деталь. Фундамент в этом случае лучше делать ленточным (единым для всех трех колонн), а не столбчатым (отдельно для каждой колонны), в противном случае даже небольшие просадки фундамента приведут к дополнительным напряжениям в теле колонны и это может привести к разрушению. С учетом всего вышеизложенного наиболее оптимальным будет сечение колонн 0,51х0,51 м, да и с эстетической точки зрения такое сечение является оптимальным. Площадь сечения таких колонн составит 2601 см².
Пример расчета кирпичной колонны на устойчивость
при внецентренном сжатии
Таким образом даже при очень большом эксцентриситете приложения нагрузки у нас имеется более чем двукратный запас по прочности.
Примечание: СНиП II-22-81 (1995) «Каменные и армокаменные конструкции» рекомендует использовать другую методику расчета сечения, учитывающую особенности каменных конструкций, однако результат при этом будет приблизительно таким же, поэтому методика расчета, рекомендуемая СНиПом здесь не приводится.
При этом возникает естественный вопрос: какое минимальное сечение колонн обеспечит требуемую прочность и устойчивость? Конечно же, идея выложить колонны из глиняного кирпича, а тем более стены дома, является далеко не новой и все возможные аспекты расчетов кирпичных стен, простенков, столбов, которые есть суть колонны, достаточно подробно изложены в СНиП II-22-81 (1995) «Каменные и армокаменные конструкции». Именно этим нормативным документом и следует руководствоваться при расчетах. Приводимый ниже расчет, не более, чем пример использования указанного СНиПа.
Чтобы определить прочность и устойчивость колонн, нужно иметь достаточно много исходных данных, как то: марка кирпича по прочности, площадь опирания ригелей на колонны, нагрузка на колонны, площадь сечения колонны, а если на этапе проектирования ничего из этого не известно, то можно поступить следующим образом:
Пример расчета кирпичной колонны на устойчивость при центральном сжатии
Проектируется:
Терраса размерами 5х8 м. Три колонны (одна посредине и две по краям) из лицевого пустотелого кирпича сечением 0.25х0.25 м. Расстояние между осями колонн 4 м. Марка кирпича по прочности М75.
Расчетные предпосылки:
N с кровли = (180·1.25 + 75)·5·8/4 = 3000 кг или 3 тонны
N с террасы = 600·5·8/4 = 6000 кг или 6 тонн
Собственный вес колонн длиной 3 м будет составлять:
N с колонны = 1500·3·0.38·0.38 = 649.8 кг или 0.65 тонн
Таким образом суммарная нагрузка на среднюю нижнюю колонну в сечении колонны возле фундамента составит:
N с об = 3000 + 6000 + 2·650 = 10300 кг или 10.3 тонн
Однако в данном случае можно учесть, что существует не очень большая вероятность того, что временная нагрузка от снега, максимальная в зимнее время, и временная нагрузка на перекрытие, максимальная в летнее время, будут приложены одновременно. Т.е. сумму этих нагрузок можно умножить на коэффициент вероятности 0.9, тогда:
N с об = (3000 + 6000)·0.9 + 2·650 = 9400 кг или 9.4 тонн
Расчетная нагрузка на крайние колонны будет почти в два раза меньше:
N кр = 1500 + 3000 + 1300 = 5800 кг или 5.8 тонн
2. Определение прочности кирпичной кладки.
10300/625 = 16.48 кг/см 2 > R = 12 кгс/см 2
Таким образом для обеспечения необходимой прочности колонны нужно или использовать кирпич большей прочности, например М150 (расчетное сопротивление сжатию при марке раствора М100 составит 22·0.8 = 17.6 кг/см 2) или увеличивать сечение колонны или использовать поперечное армирование кладки. Пока остановимся на использовании более прочного лицевого кирпича.
3. Определение устойчивости кирпичной колонны.
Примечание : Вообще-то с коэффициентом m g все не так просто, подробности можно посмотреть в комментариях к статье.
а) при неподвижных шарнирных опорах l 0 = Н ;
в) для свободно стоящих конструкций l 0 = 2Н ;
1. Применить принципиально другую конструктивную схему
3. Сделать диафрагму жесткости
в плоскости, параллельной плоскости стены. Например по краям выложить не колонны, а скорее простенки. Это также позволит рассматривать и верхнюю и нижнюю опору колонны, как шарнирные, но в этом случае необходимо дополнительно рассчитывать диафрагму жесткости.
4. Не обращать внимания на вышеприведенные варианты и рассчитывать колонны, как отдельно стоящие с жесткой нижней опорой, т.е l 0 = 2Н
В конце концов древние греки ставили свои колонны (правда, не из кирпича) без каких-либо знаний о сопротивлении материалов, без использования металлических анкеров, да и столь тщательно выписанных строительных норм и правил в те времена не было, тем не менее некоторые колонны стоят и по сей день.
Теперь, зная расчетную длину колонны, можно определить коэффициент гибкости:
Теперь, зная значение коэффициента гибкости, можно наконец-то определить коэффициент продольного изгиба по таблице:
При этом упругая характеристика кладки α определяется по таблице:
В итоге значение коэффициента продольного изгиба составит около 0.6 (при значении упругой характеристики α = 1200, согласно п.6). Тогда предельная нагрузка на центральную колонну составит:
N р = m g φγ с RF = 1х0.6х0.8х22х625 = 6600 кг N с об = 9400 кг
Это означает, что сечения 38х38 см для обеспечения устойчивости нижней центральной центрально-сжатой колонны хватает с запасом и даже можно уменьшить марку кирпича. Например, при первоначально принятой марке М75 предельная нагрузка составит:
N р = m g φγ с RF = 1х0.8х0.8х12х1300 = 9984 кг > N с об = 9400 кг
Пример расчета кирпичной колонны на устойчивость при внецентренном сжатии
Таким образом даже при очень большом эксцентриситете приложения нагрузки у нас имеется более чем двукратный запас по прочности.
Примечание: СНиП II-22-81 (1995) «Каменные и армокаменные конструкции» рекомендует использовать другую методику расчета сечения, учитывающую особенности каменных конструкций, однако результат при этом будет приблизительно таким же, поэтому методику расчета, рекомендуемую СНиПом здесь не привожу.
Проверим прочность кирпичного простенка несущей стены жилого дома переменной этажности в г. Вологде.
Площадь сечения простенка-А=1.04м 2 ;
Длина опорной площадки плит перекрытия на кладку
Сбор нагрузки от покрытия и перекрытий представлен в таблицах 2.13, 2.14, 2.15. Расчетный простенок представлен на рис. 2.5.
Таблица 2.13. Сбор нагрузок на покрытие, кН/м 2
Нормативное значение кН/м2
Расчетное значение кН/м2
1. Слой линокрома ТКП, t=3,7 мм,
вес 1м2 материала 4,6 кг/м2, =1100 кг/м3
2. Слой линокрома ХПП, t=2,7 мм
вес 1м2 материала 3,6 кг/м2, =1100 кг/м3
3. Грунтовка «Праймер битумный»
4. Цементно-песчаная стяжка, t=40 мм, =1800 кг/м3
5. Керамзитовый гравий, t=180 мм, =600 кг/м3,
8. Железобетонная плита перекрытия
S0н =0,7ЧSqмЧСeЧСt= 0,7Ч2,4 1Ч1Ч1
Таблица 2.14. Сбор нагрузок на чердачное перекрытие, кН/м2
Таблица 2.15. Сбор нагрузок на междуэтажное перекрытие, кН/м2
Таблица 2.16. Сбор нагрузок на 1 м.п. от наружной стены t=680 мм, кН/м2
Определим ширину грузового участка по формуле 2.12
где b-расстояние между разбивочными осями, м;
Длина грузовой площади простенка определяется по формуле (2.13).
Определение грузовой площади (соответственно рисунку 2.6) производится по формуле (2.14)
Рисунок 2.13. Схема определения грузовой площади простенка
Подсчет усилия N на простенок от вышерасположенных этажей на уровне низа перекрытий первого этажа, ведем исходя из грузовой площади и действующих нагрузок на перекрытия, покрытия и кровлю, нагрузки от веса наружной стены.
Таблица 2.17. Сбор нагрузок, кН/м
Расчетное значение кН/м
1. Конструкция покрытия
2. Чердачное перекрытие
3. Междуэтажное перекрытие
4. Наружная стена t=680 мм
Расчет внецентренно сжатых неармированных элементов каменных конструкций следует производить по формуле 13
Расчет стены из пористых блоков
на прочность и устойчивость
В последнее время в малоэтажном строительстве все чаще используются различные газобетонные, газосиликатные, пенобетонные и другие блоки с пористой структурой. Преимущества таких блоков по сравнению с традиционными конструкционными материалами для стен, такими как кирпич, камень, тяжелый бетон, казалось бы очевидны: малый объемный вес, низкая теплопроводность, простота обработки. Однако при всем при этом у блоков с пористой структурой есть один существенный недостаток: низкая прочность и это нужно учитывать при возведении стен.
Конечно же прочность пористых блоков напрямую зависит от плотности. Чем выше плотность, тем больше прочность, но это значит, что при большей плотности будет больше вес блока при тех же размерах и повысится теплопроводность. Плотность блоков можно определить по маркировке. Обычно пористые блоки маркируются литерой D (от английского density), после которой следуют цифры, означающие удельную плотность. Например, если блок имеет маркировку D500, это означает что материал, из которого изготовлен блок имеет плотность 500 кг/м³. Блоки с пористой структурой могут иметь марку от D200 до D1200. В зависимости от марки блоки делятся на теплоизоляционные и конструкционные, при этом блоки марки D200-D400 явяются теплоизоляционными, т.е. использовать их для возведения несущих стен вообще нельзя, блоки марки D500 могут быть как теплоизоляционными, так и конструкционно-теплоизоляционными и использовать их для монтажа несущих стен можно только после соответствующих расчетов, блоки марки D600-D900 являются конструкционно-теплоизоляционными, а блоки марки D1000 и выше являются только конструкционными, но это вовсе не означает, что их не нужно проверять на прочность. Чтобы долго не мучить Вас абстрактными размышлениями на эту тему, перейдем сразу к конкретике:
Пример расчета стены из газосиликатных блоков
на устойчивость при центральном сжатии
Примечание: такие исходные условия приняты для упрощения расчетов и могут быть далеки от реальности.
1. Внутренняя несущая стена из газосиликатных блоков шириной 300 мм марки по плотности D500 (заявлено производителем).
N = FR =100·30·28 = 84000 кг или 84 тонны (1.1).
Цифры впечатляют, и на первый взгляд все в этой формуле правильно. Но так ли это, можем ли мы безоговорочно воспользоваться этой формулой или нам чего-то недоговаривают? Давайте проверим.
2. Класс блоков по прочности В2,5 (заявлена производителем).
Таблица 1. Приблизительные соотношения между классом и маркой бетона по прочности.
таким образом получается, что блокам класса В2,5 соответствует марка М35 и тогда по таблице:
Таблица 2. Расчетные сопротивления сжатию для блоков высотой 200-300 мм (согласно СНиП II-22-81 (1995))
максимальное расчетное сопротивление не превысит 10 кг/см² и это логично, так как прочность блока будет всегда больше прочности кладки из таких блоков, потому как на прочность кладки в свою очередь влияет неоднородность раствора, неравномерность раствора и т.д.
Конечно можно продолжать верить составителям рекламных проспектов, согласно утверждениям которых прочность кладки из их материала может превышать прочность кладки из блоков тяжелого бетона класса В10-В12,5, а можно попробовать проверить прочность материала самому. Для этого достаточно иметь кубик размерами 1,1х1,1х1,1 см и гирю 32 кг. Если на испытываемый блок положить кубик, а затем осторожно и очень медленно, ведь мы проверяем расчетное сопротивление при статической нагрузке, а не при динамической, поставить на кубик гирю так, чтобы центр тяжести гири по возможности совпал с центом тяжести кубика, а через несколько секунд убрать, то если правы составители рекламных проспектов, на поверхности блока не останется ни малейшей вмятины. Ведь в этом случае нагрузка будет составлять приблизительно 26,5 кг/см². А если на поверхности блока останутся следы даже после того, как на кубик будет установлена гиря весом 16 кг, то значит блок не соответствует заявленному классу по прочности. Конечно, это не самый правильный способ определения разрушающей нагрузки, к тому же испытаний нужно провести несколько, тем не менее это самый доступный способ (если есть соответствующие гири и кубик).
3. Расчетная нагрузка на стену первого этажа.
Так как на внутреннюю стену будут опираться плиты одинаковой длины, и если при этом на плиты будет действовать одинаковая нагрузка, а длина опорных участков плит будет одинаковой, то нагрузку от плит перекрытия на стену можно считать приложенной к центру сечения стены. Нагрузка на погонный метр стены от плит перекрытия первого и второго этажа (собственный вес пустотной плиты около 300 кг/м² + временная нагрузка около 400 кг/м²) будет составлять:
Примечание: В действительности временная нагрузка будет меньше, так как мы не вычли ширину опорных участков. Но так как саму временную нагрузку мы приняли условно, то для упрощения расчетов оставим все как есть.
Нагрузка от веса стены второго этажа при равномерно распределенной плотности: 500·5·0,3 = 750 кг. Так как наиболее уязвимым с точки зрения сопромата является поперечное сечение посредине высоты стены, то в расчетах следует учесть не всю высоту первого этажа, а только половину, таким образом нагрузка от стены составит 750 + 375 = 1125 кг.
Примечание: Отделка стен может быть разной, но как минимум это штукатурка цементным раствором. Да и блоки обычно укладываются на клей или раствор, имеющий намного более высокую плотность, чем блоки. При плотности цементно-песчаного раствора около 1800 кг/м³ и толщине слоя штукатурки около 2,0 см с каждой стороны и приведенной толщине клеевого слоя 1 см, вес стены увеличится в 1,6-1,7 раза. Поэтому в расчетах используется не реальное значение высоты стены 3 м, а приведенное 3·1,65 · 5. Если стены будут обшиваться листовыми материалами по каркасу, то дополнительная нагрузка на стены в зависимости от исполнения каркаса может не учитываться, но учитывать вес раствора на который укладываются блоки, все равно придется.
N = 7420 + 1125 = 8545 кг или 8,545 тонн
Проверить прочность стены.
Зная расчетную длину, можно определить коэфициент гибкости стены:
Определить радиус инерции в принципе не сложно, нужно разделить момент инерции сечения на площадь сечения, а затем из результата извлечь квадратный корень, значение радиуса инерции для погонного метра стены шириной 30 см я приводил выше. Только при этом нельзя забывать, что в расчет берется наименьший момент инерции. Таким образом λh = 300/30 = 10, λi = 300/8,66 = 34,64.
Теперь зная значение коэффициента гибкости можно определить наконец коэффициент продольного изгиба по таблице:
Таблица 3. Коэффициенты продольного изгиба для каменных и армокаменных конструкций (согласно СНиП II-22-81 (1995))
При этом упругая характеристика кладки α определяется по таблице:
Таблица 4. Упругая характеристика кладки α (согласно СНиП II-22-81 (1995))
Таким образом даже при максимальной марке раствора упругая характеристика не превысит значения 750 (п.4А) и тогда значение коэффициента продольного изгиба будет 0,84. Но перед тем, как приступать к окончательному расчету, следует учесть еще одно требование СНиПа II-22-81 (п.3.11.в), оказывается расчетное сопротивление сжатию нужно еще умножить на коэффициент условий работы, который для ячеистых бетонов вида А составляет γс = 0,8. И только теперь мы можем определить максимальную нагрузку, которую выдержит погонный метр нашей стены:
Nр = mgφγсRF = 1·0,84·0,8·10·3000 = 20160 кг или 20,16 тонн
Как видим, у нас все равно имеется очень хороший запас по прочности (правда, максимальная разрушающая нагрузка получилась в 4 раза меньше заявленной производителями, но кто на это обращает внимание?). А теперь посмотрим как будет работать наша стена, если нагрузка к ней будет приложена не по центру тяжести сечения.
Пример расчета стены из газосиликатных блоков
на устойчивость при внецентренном сжатии
Примечание: такие исходные условия приняты для упрощения расчетов и могут быть далеки от реальности.
1. Эксцентриситет нагрузки.
При использовании плит разной длины нагрузка на внутреннюю опорную стену от этих плит будет разная, поэтому суммарная сосредоточенная нагрузка будет приложена не по центру тяжести сечения а с эксцентриситетом ео. А это означает, что на стену кроме самой нагрузки будет также действовать изгибающий момент, равный M = Neо, и этот момент нужно учитывать при расчете. В общем случае проверка на прочность выполняется по следующей формуле:
2. Расчетная нагрузка на стену первого этажа.
Суммарная нагрузка на погонный метр стены от плит перекрытия первого и второго этажа (собственный вес пустотной плиты около 300 кг/м² + временная нагрузка около 400 кг/м²) будет составлять:
при этом нагрузка от плит 6,3 м будет составлять:
Nплит 6,6 = 2·700·6,6/2 = 4620 кг
при этом нагрузка от плит 3,6 м будет составлять:
Nплит 3,6 = 2·700·3,6/2 = 2520 кг
Примечание: В действительности временная нагрузка будет меньше, так как мы не вычли ширину опорных участков. Но так как саму временную нагрузку мы приняли условно, то для упрощения расчетов оставим все как есть.
Нагрузка от веса стены второго этажа при равномерно распределенной плотности: 500·5·0,3 = 750 кг. Так как наиболее уязвимым с точки зрения сопромата является поперечное сечение посредине высоты стены, то в расчетах следует учесть не всю высоту первого этажа, а только половину, таким образом нагрузка от стены составит 750 + 375 = 1125 кг.
Примечание: Отделка стен может быть разной, но как минимум это штукатурка цементным раствором. Да и блоки обычно укладываются на клей или раствор, имеющий намного более высокую плотность, чем блоки. При плотности цементно-песчаного раствора около 1800 кг/м³ и толщине слоя штукатурки около 2,0 см с каждой стороны и приведенной толщине клеевого слоя 1 см, вес стены увеличится в 1,6-1,7 раза. Поэтому в расчетах используется не реальное значение высоты стены 3 м, а приведенное 3·1.65 ≈ 5. Если стены будут обшиваться листовыми материалами по каркасу, то дополнительная нагрузка на стены в зависимости от исполнения каркаса может не учитываться, но учитывать вес раствора на который укладываются блоки, все равно придется.
N = 7140 + 1125 = 8265 кг или 8,265 тонн
тогда расстояние от точки приложения суммарной сосредоточенной нагрузки или другими словами эксцентриситет:
По хорошему нужно было бы учесть уменьшение эксцентриситета при действии центрально приложенной нагрузки от веса стен, но так как мы не учитывали увеличение эксцентриситета из-за неравномерности распределения нагрузки от плит, то и уменьшение эксцентриситета мы учитывать не будем.
Проверить прочность стены.
Примечание: СНиП II-22-81 (1995) рекомендует другую методику расчета сечения, учитывающую особенности каменных конструкций, однако результат при этом будет приблизительно таким же.
Как видим у нас все равно остался двукратный запас по прочности и все было бы хорошо, если бы не одна маленькая, но очень важная деталь. Во внутренней несущей стене люди очень часто делают дверные проемы из странного каприза беспрепятственно переходить из одного помещения в другое. Это означает что над дверным проемом будет перемычка, а еще это означает что на участок стены возле дверного проема будет действовать дополнительная нагрузка от перемычки. При данных условиях максимально допустимая ширина проема будет составлять примерно:
b = Np/N = 16,5/8,265 = 2 метра
а если хочется сделать проем большей ширины, то нужно или увеличивать ширину стены или использовать блоки большей прочности или усиливать проем колоннами из более прочного материала.