Произвольная точка что это

произвольная точка

Смотреть что такое «произвольная точка» в других словарях:

Изолированная точка множества — Изолированная точка в общей топологии это такая точка множества, что пересечение некоторой её окрестности с множеством состоит только из этой точки. Содержание 1 Определение 2 Связанные определения … Википедия

Изолированная точка — в общей топологии это такая точка множества, что пересечение некоторой её окрестности с множеством состоит из единственной точки. Содержание 1 Определение 2 Связанные определения 3 Свойства … Википедия

КОНИЧЕСКИЕ СЕЧЕНИЯ — плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину (рис. 1). С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек,… … Энциклопедия Кольера

МАТЕМАТИЧЕСКИЙ АНАЛИЗ — раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и … Энциклопедия Кольера

Линия — I Линия (от лат. linea) геометрическое понятие, точное и в то же время достаточно общее определение которого представляет значительные трудности и осуществляется в различных разделах геометрии различно. 1) В элементарной… … Большая советская энциклопедия

Линия (геометрич. понятие) — Линия (от лат. linea), геометрическое понятие, точное и в то же время достаточно общее определение которого представляет значительные трудности и осуществляется в различных разделах геометрии различно. 1) В элементарной геометрии рассматриваются… … Большая советская энциклопедия

ТОПОЛОГИЧЕСКОЕ ПРОСТРАНСТВО — совокупность двух объектов: множества X, состоящего из элементов произвольной природы, наз. точками данного пространства, и из введенной в это множество топологической структуры, или топологии, все равно открытой или замкнутой (одна переходит в… … Математическая энциклопедия

АБЕЛЕВ ДИФФЕРЕНЦИАЛ — голоморфный или мероморфный дифференциал на компактной, или замкнутой, римановой поверхности S(см. Дифференциал на римановой поверхности). Пусть g род поверхности S; а1b1 а 2b2. agbg циклы канонич. базиса гомологии S. В зависимости от характера… … Математическая энциклопедия

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ — раздел математики, в к ром изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Развитие Д. и. тесно связано с развитием интегрального исчисления. Неразрывно и их содержание. Вместе они составляют основу… … Математическая энциклопедия

Кривая Пеано — общее название для параметрических кривых, образ которых содержит квадрат (или, в более общем смысле, открытые области пространства) Содержание 1 Свойства 2 Примеры 3 Обобщения … Википедия

Источник

4.1. Точка, прямая, плоскость. Расстояние и смещение. Действительные числа

Разобравшись с тем, что такое единицы измерения и размерность, мы можем теперь перейти собственно к измерениям. В школьной математике используются два измерительных прибора — (1) линейка для измерения расстояний и (2) транспортир для измерения углов.

Точка

Расстояние всегда меряется между какими-либо двумя точками. С практической точки зрения, точка представляет собой маленькое пятнышко, которое остается на бумаге, если ткнуть в нее карандашом или ручкой. Другой, более предпочтительный способ задать точку, — это нарисовать крестик двумя тонкими линиями, в результате чего задается точка их пересечения. На чертежах в книгах точка часто изображается в виде маленького черного кружочка. Но это всё — лишь приблизительные наглядные изображения, а в строгом математическом смысле, точка это воображаемый объект, размер которого по всем направлениям равен нулю. Для математиков весь мир состоит из точек. Точки находятся везде. Когда мы тыкаем ручкой в бумагу или рисуем крестик, мы не создаем новую точку, а лишь ставим метку на уже существующую, для того чтобы привлечь к ней чье-либо внимание. Если не оговорено противное, то подразумевается, что точки неподвижны и не меняют своего взаимного расположения. Но несложно вообразить и движущуюся точку, которая перемещается с места на место, как бы сливаясь то с одной неподвижной точкой, то с другой.

Прямая

Приставив линейку к двум точкам, мы можем провести через них прямую линию, и притом единственным образом. Воображаемая математическая прямая, проведенная по воображаемой идеальной линейке, обладает нулевой толщиной и простирается в обе стороны до бесконечности. На реальном чертеже эта воображаемая конструкция принимает вид:

Произвольная точка что это. Смотреть фото Произвольная точка что это. Смотреть картинку Произвольная точка что это. Картинка про Произвольная точка что это. Фото Произвольная точка что это

Собственно говоря, в этом рисунке всё неправильно. Толщина линии здесь явно больше нуля, и никак не скажешь, чтобы линия простиралась до бесконечности. Тем не менее подобные неправильные рисунки очень полезны в качестве опоры для воображения, и мы будем ими постоянно пользоваться. Для того чтобы было удобнее отличать одну точку от другой, их обычно помечают заглавными буквами латинского алфавита. На этом рисунке, например, точки обозначены буквами A и B. Прямая, проходящая через точки A и B, автоматически получает название «прямая AB». Для краткости допустимо также обозначение (AB), где опущено слово «прямая» и добавлены круглые скобки. Прямые также можно обозначать строчными буквами. На рисунке, приведенном выше, прямая AB обозначена буквой n.

Помимо точек A и B на прямой n имеется огромное число других точек, каждую из которых можно представить как пересечение с еще какой-то прямой. Через одну и ту же точку можно провести много разных прямых.

Произвольная точка что это. Смотреть фото Произвольная точка что это. Смотреть картинку Произвольная точка что это. Картинка про Произвольная точка что это. Фото Произвольная точка что это

Если мы знаем, что на прямой имеются несовпадающие точки A, B, C и D, то ее с полным правом можно обозначить не только как (AB), но и как (AC), (BD), (CD) и т.п.

Отрезок. Длина отрезка. Расстояние между точками

Часть прямой, ограниченная двумя точками, называется отрезком. Эти ограничивающие точки также принадлежат отрезку и называются его концами. Отрезок, концы которого приходятся на точки A и B, обозначается как «отрезок AB» или, несколько короче, [AB].

Произвольная точка что это. Смотреть фото Произвольная точка что это. Смотреть картинку Произвольная точка что это. Картинка про Произвольная точка что это. Фото Произвольная точка что это

Всякий отрезок характеризуется длиной — числом (возможно, дробным) «шагов», которые надо сделать вдоль отрезка, чтобы попасть из одного конца в другой. При этом длина самого «шага» является строго фиксированной величиной, которая принимается за единицу измерения. Длины отрезков, нарисованных на листе бумаги, удобнее всего измерять в сантиметрах. Если концы отрезка приходятся на точки A и B, то его длина обозначается как |AB|.

Под расстоянием между двумя точками понимается длина соединяющего их отрезка. Фактически, однако, проводить отрезок для измерения расстояния не требуется — достаточно приставить к обоим точкам линейку (на которой заранее нанесены следы от «шагов»). Поскольку в математике точка — это вымышленный объект, то ничто не мешает нам пользоваться в своем воображении идеальной линейкой, которая измеряет расстояние с абсолютной точностью. Не следует, однако, забывать, что реальная линейка, приложенная к пятнышкам или центрам крестиков на бумаге, позволяет устанавливать расстояние лишь приблизительно — с точностью до одного миллиметра. Расстояние всегда неотрицательно.

Положение точки на прямой

Пусть нам дана некоторая прямая. Отметим на ней произвольную точку и обозначим ее буквой O. Поставим рядом с ней число 0. Какое-то одно из двух возможных направлений вдоль прямой назовем «положительным», а противоположное ему — «отрицательным». Обычно за положительное принимается направление слева направо или снизу вверх, но это необязательно. Отметим положительное направление стрелочкой, как показано на рисунке:

Произвольная точка что это. Смотреть фото Произвольная точка что это. Смотреть картинку Произвольная точка что это. Картинка про Произвольная точка что это. Фото Произвольная точка что это

Теперь для любой точки, расположенной на прямой, мы можем определить ее положение. Положение точки A задается величиной, которая может быть отрицательной, равной нулю или положительной. Ее абсолютное значение равно расстоянию между точками O и A (то есть длине отрезка OA), а знак определяется тем, в каком направлении от точки O надо двигаться, чтобы попасть в точку A. Если двигаться надо в положительном направлении, то и знак положительный. Если в отрицательном, то и знак отрицательный. Вместо слова «положение» часто используют также слово «координата».

Иррациональные и действительные (вещественные) числа

Когда мы имеем дело с реальным чертежом и определяем положение реальной точки на реальной проямой с помощью школьной линейки, у нас получается значение, округленное с точностью до одного миллиметра. Иначе говоря, результатом оказывается величина, взятая из следующего ряда:

Результат никак не может быть равен, например, 1/3 см, потому что, как мы знаем, одна треть санитиметра представима в виде бесконечной периодической дроби

которая после округления должна стать равной 0,3 см.

Иное дело, когда мы манипулируем в воображении идеальными математическими объектами.

Во-первых, в этом случае запросто можно отбрасывать единицы измерения и оперировать исключительно безразмерными величинами. Тогда мы приходим к геометрической конструкции, с которой мы познакомились, когда проходили рациональные числа, и которую мы назвали числовой прямой:

Произвольная точка что это. Смотреть фото Произвольная точка что это. Смотреть картинку Произвольная точка что это. Картинка про Произвольная точка что это. Фото Произвольная точка что это

Поскольку слово «прямая» в геометрии и без того сильно «нагружено», эту же конструкцию часто называют числовой осью или просто осью.

Во-вторых, мы вполне можем себе представить, что координата точки задается какой-нибудь периодической десятичной дробью, вроде

Более того, мы можем вообразить бесконечную непериодическую дробь — такую, например, как

Подобные воображаемые числа, представимые в виде бесконечных непериодических десятичных дробей, называются иррациональными. Иррациональные числа вместе с уже знакомыми нам рациональными числами образуют так называемые действительные числа. Вместо слова «действительные» употребимо также слово «вещественные». Любое мыслимое положение точки на прямой может быть выражено действительным числом. И наборот, если нам дано какое-то действительное число x, мы всегда можем представить себе точку X, положение которой задается числом x.

Смещение

Пусть a — координата точки A, а b — координата точки B. Тогда величина

является смещением, которое переводит точку A в точку B. Это становится особенно очевидно, если предыдущее равенство переписать в виде

Произвольная точка что это. Смотреть фото Произвольная точка что это. Смотреть картинку Произвольная точка что это. Картинка про Произвольная точка что это. Фото Произвольная точка что это

Иногда вместо слова «смещение» используют слово «вектор». Несложно видеть, что положение x произвольной точки X — это не что иное, как смещение, переводящее точку O (с координатой, равной нулю) в точку X:

Смещения можно складывать между собой, а также вычитать друг из друга. Так, если смещение (ba) переводит точку A в точку B, а смещение (cb) точку B в точку C, тогда смещение

переводит точку A в точку C.

Примечание. По логике вещей, тут следовало бы уточнить, как надлежит складывать и вычитать иррациональные числа, поскольку смещение вполне может оказаться иррациональным. Разумеется, математики позаботились о том, чтобы выработать соответствующие формальные процедуры, но на практике мы этим заниматься не будем, так как для решения практических задач всегда достаточно приближенных вычислений с округленными величинами. Мы сейчас просто примем на веру, что понятия «сложение» и «вычитание» — а также «умножение» и «деление» — корректно определены для любых двух действительных чисел (с той, впрочем, оговоркой, что делить на ноль нельзя).

Тут, пожалуй, будет уместно отметить тонкое различие между понятиями «смещение» и «расстояние». Расстояние всегда неотрицательно. Оно фактически представляет собой смещение, взятое по абсолютной величине. Так, если смещение

переводит точку A в точку B, тогда расстояние s между точками A и B равно

Это равенство остается справедливым независимо от того, которое из двух чисел больше — a или b.

Плоскость

В практическом смысле, плоскость — это лист бумаги, на котором мы чертим наши геометрические чертежи. Воображаемая математическая плоскость отличается от листа бумаги тем, что она имеет нулевую толщину и неограниченную поверхность, которая простирается в разные стороны до бесконечности. Кроме того, в отличие от листа бумаги, математическая плоскость является асолютно жесткой: она никогда не гнется и не мнется — даже если ее оторвать от письменного стола и расположить в пространстве каким угодно образом.

Расположение плоскости в пространстве однозначно задается тремя точками (если только они не лежат на какой-нибудь одной прямой). Чтобы это нагляднее себе представить, давайте нарисуем три произвольные точки, O, A и B, и проведем через них две прямые OA и OB, как показано на рисунке:

Произвольная точка что это. Смотреть фото Произвольная точка что это. Смотреть картинку Произвольная точка что это. Картинка про Произвольная точка что это. Фото Произвольная точка что это

«Натянуть» в воображении плоскость на две пересекающиеся прямые уже несколько проще, чем «опереть» ее на три точки. Но для еще большей наглядности проделаем еще кое-какие дополнительные построения. Давайте возьмем наугад пару точек: одну в любом месте на прямой OA, а другую — в любом месте на прямой OB. Проведем через эту пару точек новую прямую. Далее, подобным же образом выберем другую пару точек и проведем через них еще одну прямую. Повторив эту процедуру много раз, мы получим что-то вроде паутины:

Произвольная точка что это. Смотреть фото Произвольная точка что это. Смотреть картинку Произвольная точка что это. Картинка про Произвольная точка что это. Фото Произвольная точка что это

Наложить плоскость на такую конструкцию уже совсем просто — тем более что эту воображаемую паутину можно сделать настолько густой, что она покроет собой всю плоскость без пробелов.

Заметим, что если взять на плоскости пару несовпадающих точек и провести через них прямую, то эта прямая обязательно будет лежать в той же самой плоскости.

Конспект

Точка (A, B, и т.п.): воображаемый объект, размер которого по всем направлениям равен нулю.

Прямая (n, m или (AB)): бесконечно тонкая линия; проводится через две точки (A и B) по линейке однозначным образом; простирается в обе стороны до бесконечности.

Отрезок ([AB]): часть прямой, ограниченная двумя точками (A и B) — концами отрезка, которые также считаются принадлежащими отрезку.

Длина отрезка (|AB|): (дробное) число сантиметров (или же другой единицы измерения), укладывающихся между концами (A и B).

Расстояние между двумя точками: длина отрезка с концами в этих точках.

Положение точки на прямой (координата): расстояние от точки до некоторого заранее выбранного центра (также лежащего на прямой) с приписанным знаком «плюс» или «минус» в зависимости от того, по какую сторону от центра точка расположена.

Положение точки на прямой задается действительным (вещественным) числом, а именно — десятичной дробью, которая может быть либо (1) конечной или бесконечной периодической (рациональные числа), либо (2) бесконечной непериодической (иррациональные числа).

Смещение, переводящее точку A (с координатой a) в точку B (с координатой b): v = ba.

Расстояние равно смещению, взятому по абсолютной величине: |AB| = |ba|.

Плоскость: бесконечно тонкий лист бумаги, простирающийся разные стороны до бесконечности; однозначно задается тремя точками, не лежащими на одной прямой.

Источник

произвольная точка

Смотреть что такое «произвольная точка» в других словарях:

Изолированная точка множества — Изолированная точка в общей топологии это такая точка множества, что пересечение некоторой её окрестности с множеством состоит только из этой точки. Содержание 1 Определение 2 Связанные определения … Википедия

Изолированная точка — в общей топологии это такая точка множества, что пересечение некоторой её окрестности с множеством состоит из единственной точки. Содержание 1 Определение 2 Связанные определения 3 Свойства … Википедия

КОНИЧЕСКИЕ СЕЧЕНИЯ — плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину (рис. 1). С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек,… … Энциклопедия Кольера

МАТЕМАТИЧЕСКИЙ АНАЛИЗ — раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и … Энциклопедия Кольера

Линия — I Линия (от лат. linea) геометрическое понятие, точное и в то же время достаточно общее определение которого представляет значительные трудности и осуществляется в различных разделах геометрии различно. 1) В элементарной… … Большая советская энциклопедия

Линия (геометрич. понятие) — Линия (от лат. linea), геометрическое понятие, точное и в то же время достаточно общее определение которого представляет значительные трудности и осуществляется в различных разделах геометрии различно. 1) В элементарной геометрии рассматриваются… … Большая советская энциклопедия

ТОПОЛОГИЧЕСКОЕ ПРОСТРАНСТВО — совокупность двух объектов: множества X, состоящего из элементов произвольной природы, наз. точками данного пространства, и из введенной в это множество топологической структуры, или топологии, все равно открытой или замкнутой (одна переходит в… … Математическая энциклопедия

АБЕЛЕВ ДИФФЕРЕНЦИАЛ — голоморфный или мероморфный дифференциал на компактной, или замкнутой, римановой поверхности S(см. Дифференциал на римановой поверхности). Пусть g род поверхности S; а1b1 а 2b2. agbg циклы канонич. базиса гомологии S. В зависимости от характера… … Математическая энциклопедия

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ — раздел математики, в к ром изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Развитие Д. и. тесно связано с развитием интегрального исчисления. Неразрывно и их содержание. Вместе они составляют основу… … Математическая энциклопедия

Кривая Пеано — общее название для параметрических кривых, образ которых содержит квадрат (или, в более общем смысле, открытые области пространства) Содержание 1 Свойства 2 Примеры 3 Обобщения … Википедия

Источник

произвольная точка

1 произвольная точка

2 произвольная точка

См. также в других словарях:

Изолированная точка множества — Изолированная точка в общей топологии это такая точка множества, что пересечение некоторой её окрестности с множеством состоит только из этой точки. Содержание 1 Определение 2 Связанные определения … Википедия

Изолированная точка — в общей топологии это такая точка множества, что пересечение некоторой её окрестности с множеством состоит из единственной точки. Содержание 1 Определение 2 Связанные определения 3 Свойства … Википедия

КОНИЧЕСКИЕ СЕЧЕНИЯ — плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину (рис. 1). С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек,… … Энциклопедия Кольера

МАТЕМАТИЧЕСКИЙ АНАЛИЗ — раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и … Энциклопедия Кольера

Линия — I Линия (от лат. linea) геометрическое понятие, точное и в то же время достаточно общее определение которого представляет значительные трудности и осуществляется в различных разделах геометрии различно. 1) В элементарной… … Большая советская энциклопедия

Линия (геометрич. понятие) — Линия (от лат. linea), геометрическое понятие, точное и в то же время достаточно общее определение которого представляет значительные трудности и осуществляется в различных разделах геометрии различно. 1) В элементарной геометрии рассматриваются… … Большая советская энциклопедия

ТОПОЛОГИЧЕСКОЕ ПРОСТРАНСТВО — совокупность двух объектов: множества X, состоящего из элементов произвольной природы, наз. точками данного пространства, и из введенной в это множество топологической структуры, или топологии, все равно открытой или замкнутой (одна переходит в… … Математическая энциклопедия

АБЕЛЕВ ДИФФЕРЕНЦИАЛ — голоморфный или мероморфный дифференциал на компактной, или замкнутой, римановой поверхности S(см. Дифференциал на римановой поверхности). Пусть g род поверхности S; а1b1 а 2b2. agbg циклы канонич. базиса гомологии S. В зависимости от характера… … Математическая энциклопедия

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ — раздел математики, в к ром изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Развитие Д. и. тесно связано с развитием интегрального исчисления. Неразрывно и их содержание. Вместе они составляют основу… … Математическая энциклопедия

Кривая Пеано — общее название для параметрических кривых, образ которых содержит квадрат (или, в более общем смысле, открытые области пространства) Содержание 1 Свойства 2 Примеры 3 Обобщения … Википедия

Источник

точка произвольная

Смотреть что такое «точка произвольная» в других словарях:

Изолированная точка множества — Изолированная точка в общей топологии это такая точка множества, что пересечение некоторой её окрестности с множеством состоит только из этой точки. Содержание 1 Определение 2 Связанные определения … Википедия

Изолированная точка — в общей топологии это такая точка множества, что пересечение некоторой её окрестности с множеством состоит из единственной точки. Содержание 1 Определение 2 Связанные определения 3 Свойства … Википедия

КОНИЧЕСКИЕ СЕЧЕНИЯ — плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину (рис. 1). С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек,… … Энциклопедия Кольера

ПОТЕНЦИАЛА ТЕОРИЯ — в первоначальном понимании учение о свойствах сил, действующих по закону всемирного тяготения. В формулировке этого закона, данной И. Ньютоном (I. Newton, 1687), речь идет только о силах взаимного притяжения, действующих на две материальные… … Математическая энциклопедия

ЭРГОДИЧЕСКАЯ ТЕОРИЯ — Введение Э. т. (метрическая теория динамических систем) раздел теории динамических систем, изучающий их статистич. свойства. Возникновение Э. т. (1 я треть 20 в.) было стимулировано попытками доказать эргодическую гипотезу (термин введён П. и Т.… … Физическая энциклопедия

Дифференциальное исчисление — Исчисление бесконечно малых, включающее так называемое Д. исчисление, а также ему обратное интегральное, принадлежит к числу наиболее плодотворных открытий человеческого ума и составило эпоху в истории точных наук. Ближайшим поводом к изобретению … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

КОШИ ИНТЕГРАЛ — 1) К. и. определенный интеграл от непрерывной функции одного действительного переменного. Пусть функция f(x).непрерывна на отрезке наз. определенным интегралом по К о ш и от функции f(x) на отрезке [ а, b]и обозначают К. и. частный случай Римана… … Математическая энциклопедия

МАТЕМАТИЧЕСКИЙ АНАЛИЗ — раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и … Энциклопедия Кольера

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *