Потоки и ядра в чем разница
Ядра или потоки: выясняем что важнее для процессора
В спецификации каждого процессора обязательно присутствует информация о количестве ядер и потоков. Правила «чем больше, тем лучше», в этой ситуации никто не отменял, но давайте выясним, в каких задачах виртуальные ядра способны дать ощутимый прирост производительности, а в каких останутся бесполезными.
Зачем процессору несколько ядер?
Вот поэтому процессор – это мозговой центр каждого компьютера, отвечающий за его вычислительные способности и скорость работы.
Первые процессоры были едиными устройствами, которые принимали команды и выполняли их в строгой очередности. Одно ядро позволяло выбирать процессор при покупке только по показателям частоты. А недостаток производительности на первых порах компенсировали созданием двух- и многопроцессорных конфигураций. В таких сборках команды пользователя на ввод обрабатывал первый процессор, а остальные операции по возможности равномерно распределялись между остальными. Для сборки таких систем использовались двухпроцессорные платы или конфигурации на несколько сокетов.
Следующим шагом производители создали многоядерную архитектуру, позволяющую на площади, казалось бы, небольшого микрочипа размещать несколько вычислительных центров, которые по сути являлись самостоятельными процессорами. Так в продаже появились двух-, четырех- и восьмиядерные устройства, которые обрабатывали сразу несколько потоков информации.
Позже корпорация Intel в линейке процессоров Pentium внедрила техническую возможность выполнения одним ядром двух команд за такт, что стало началом новой эпохи в компьютерных технологиях – гиперпоточности процессоров. А сейчас специалисты компании активно работают над новой технологией реализации четырех потоков на одном ядре, и уже в ближайшее время подобные процессоры будут представлены публике.
Чем отличаются ядра и потоки
Ядро – это самостоятельный вычислительный блок в архитектуре процессора, способный выполнять линейную последовательность задач за определенный период времени. Если нагрузить одно ядро несколькими последовательностями задач, то оно будет попеременно переключаться между ними, обрабатывая по одной задаче из каждого потока. В масштабах системы это приводит к замедлению работы программ и сервисов.
Поток – это программно выделенная область в физическом ядре процессора. Такая виртуальная реализация позволяет разделять ресурсы ядра и работать параллельно с двумя разными последовательностями команд. Таким образом операционная система воспринимает поток, как отдельный вычислительный центр, следовательно, ресурс ядра используется более рационально, и скорость вычислений увеличивается.
Стоит ли ожидать удвоения производительности?
Виртуальное разделение вычислительной мощности процессора на потоки называется гиперпоточностью. На практике это не физическое увеличение количества ядер, следовательно, и вычислительный потенциал процессора остается постоянным.
Гиперпоточность – это инструмент, позволяющий процессору более оперативно выполнять команды операционной системы и распределять вычислительный ресурс.
Таким образом, удвоенное количество потоков по отношению к ядрам способно повысить эффективность процессора за счет одновременного выполнения нескольких задач каждым ядром. Но прирост, даже по заверениям лидера рынка в производстве процессоров Intel будет находиться в пределах 30%.
А вот об увеличении энергопотребления и чрезмерном нагреве волноваться не стоит. Так как виртуальное разделение выполнено на производстве, то компанией просчитаны все рабочие параметры, такие как мощность и TDP, указанные в спецификации.
Что выбирать: ядра или потоки?
Поскольку ядра – это физические «мозговые центры», занимающиеся вычислениями, то за общую производительность центрального процессора отвечают именно они. Поэтому количеством ядер, ну и еще частотой процессора определяется его производительность.
Но и количество потоков также заслуживает внимания. Разберем на примере:
Двухъядерный процессор с двумя потокам нагружается операционной системой четырьмя параллельными последовательностями команд, например, от открытых игр и программ. Команды так и останутся в четырех «очередях», и ядра будут попеременно производить вычисления из каждой. При этом производительность ядра зачастую избыточна для обработки одной команды. Поэтому часть вычислительного потенциала ядра, а значит и процессора останется в резерве.
Если же взять аналогичный процессор с двумя ядрами, но уже на четыре потока, то все четыре очереди будут задействованы одновременно, по максимуму загружая ядра. Следовательно, задачи будут решены быстрее, а простоя вычислительных мощностей удастся избежать.
На практике это дает нам возможность одновременно запускать несколько программ: работать с документами, слушать музыку, общаться в мессенджерах и выполнять поиск в браузере. При этом программы будут работать эффективно, быстро, без торможений и зависаний.
Таким образом, чем больше ядер будет в процессоре, тем выше его производительность и скорость выполнения различных задач. А удвоенное количество потоков позволяет повысить эффективность процессора и задействовать его технический потенциал на полную.
В заключении интересное видео от компании Intel о том, как они создают микрочипы.
Что такое потоки в процессоре и в чём различие с ядрами?
Доброго времени суток.
Вы в курсе, что центральные процессоры для компьютера с большим количеством ядер могут уступать в производительности тем, у которых их меньше? Если вы хотите взять мощный CPU, следует учитывать и число потоков в нем. Не знаете, что такое потоки в процессоре? В этой статье вы получите информацию, которая поможет вам в выборе ЦП.
Разберемся в терминологии
Чтобы ни у кого не возникало путаницы в голове, предлагаю разобраться с ключевыми терминами, играющими роль в нашей теме.
Ядро процессора — часть микросхемы, отвечающая за выполнение одного потока команд.
В современных процах, как правило, несколько ядер, каждое из которых имеет собственный кэш первого уровня и общий — второго и третьего. Такое решение позволяет данным быстрее перемещаться между ядрами, когда они работают над одним процессом.
Не путайте с ядром операционной системы, которое координирует доступ программ к ресурсам компьютера.
Поток выполнения — самая малая единица обработки, назначенная ядром ОС, которая разделяет код и контекст процесса. В одном процессе могут действовать сразу несколько потоков и совместно использовать ресурсы CPU.
Технология Hyper-threading
Вы наверняка слышали или догадались из вышесказанного, что чем больше в процессоре ядер и гигагерц, тем он быстрее обрабатывает задачи, которые вы ему даете. Это правда. Но не только ядра влияют на производительность, если речь идет о продуктах бренда Intel.
Компания изобрела технологию под названием «Hyper-threading» (полное — hyper-threading technology, HT либо HTT), которое переводится на русский язык как гиперточность. Она разработана для процев, основанных на микроархитектуре NetBurst.
HT отсутствует в устройствах линейки Core 2, в том числе «Duo» и «Quad». Схожая технология с таким же наименованием внедрена в продуктах Core i3, «i7» и нескольких «i5», а также в некоторые модели серий Itanium и Atom.
Суть «Hyper-threading» заключается в том, что при выполнении задач операционная система определяет одно физическое ядро CPU как два логических. Как вы понимаете, HTT позволяет увеличить скорость работы устройства. И ему можно задавать больше команд одновременно. Более того, если одному логическому ядру дана задача, но он с ней не справляется, а второе при этом бездействует, то последнее помогает первому.
Сколько потоков имеет CPU?
Самый быстрый способ вычислить, сколько потоков содержится в том или ином процессоре — умножить количество ядер надвое (это только если ваш проц поддерживает гипер трэйдинг).
Но если вы не знаете число ядер и хотите определить, сколько потоков имеется в вашем ЦП прямо сейчас, вызовите Диспетчер задач путем зажатия клавиш Ctrl+Alt+Del. Дальнейшие действия зависят от версии операционки, которая у вас установлена.
На случай, если у вас вдруг что-то не получилось с Диспетчером задач, есть еще один способ:
Но тут будут показаны только сами ядра.
В принципе это всё, что я хотел, спасибо за внимание.
Ядра против потоков – в чем основные различия
Главное меню » Компьютеры » Комплектующие » Ядра против потоков – в чем основные различия
Одноядерный против многоядерного процессора
Во-первых, нам нужно прояснить разницу между одноядерным процессором и многоядерным процессором? Проще говоря, одноядерный процессор сможет обрабатывать только одну программу за раз. Однако, когда вы запускаете несколько программ одновременно, то одноядерный процессор разделит все программы на небольшие части и одновременно будет выполняться с квантованием времени, как вы можете видеть на приведенном ниже рисунке.
Выполнение процесса: одноядерный процессор
Производительность ЦП будет зависеть от количества ядер на машине и скорости, с которой отдельные ядра могут выполнять инструкции. Таким образом, если ваш веб-сайт загружается медленно и у вас одноядерный процессор, возможно, стоит приобрести выделенный сервер с многоядерным процессором или обновить тарифный план хостинга. В настоящее время этот тип процессоров используется редко, потому что нам нужна высокая вычислительная мощность для решения наших проблем в кратчайшие сроки.
В отличие от одноядерной обработки, это способ, которым вычислительные задачи делятся на части, а многоядерный процессор (несколько ядер ЦП) выполняет каждую подзадачу одновременно, как вы можете видеть на рисунке ниже:
Выполнение процесса: многоядерный процессор
Это также известно как параллельное выполнение, потому что все подзадачи выполняются параллельно, и это то, сколько задач может быть обработано одновременно. Все современные процессоры, используемые в коммерческих целях, должны иметь многоядерные процессоры, чтобы выполнять задачи в более короткие сроки.
Поток против многопоточности
Поток – это единый последовательный поток управления в программе, который позволяет выполнять несколько действий в рамках одного процесса. Однако однопоточные процессы основаны на выполнении программ (или инструкций) в одной последовательности. Проще говоря, один поток похож на одну команду, которая выполняется за раз.
Большинство производителей процессоров используют метод одновременной многопоточности (SMT), чтобы гарантировать, что один процессор может запускать несколько потоков. Многопоточность похожа на многозадачность, при которой одновременно выполняется несколько потоков, а возможность многопоточности управляет многочисленными запросами одного и того же пользователя без открытия нескольких копий программ, запущенных на компьютере.
Пользовательские потоки против потоков ядра
Потоки пользовательского уровня – это потоки на стороне пользователя, которые обрабатываются как однопоточный процесс, поскольку ядро не знает об этих типах потоков. Эти потоки намного быстрее, чем потоки уровня ядра, потому что не требует синхронизации ядра.
Потоки уровня ядра управляются операционной системой напрямую, и в области приложения нет кода управления потоками. Любое приложение можно запланировать многопоточным, и ядро выполняет его планирование на поточной основе. По сравнению с потоками пользовательского уровня, эти потоки медленнее создаются и управляются.
Ядро против потоков
Вопрос о том, что более эффективно – потоки или ядра – определяется путем измерения производительности процессора. Вы можете протестировать оба метода самостоятельно, запустив одну и ту же программу (ту, которая использует и потоки, и ядра) на каждом типе ЦП, который у вас есть на вашем компьютере. Конечно, программы, использующие оба метода, должны совместно использовать ресурсы ЦП. Если у вас есть ЦП настольного компьютера и ноутбук, вы можете обнаружить, что ЦП ноутбука будет работать лучше, чем ЦП настольного компьютера из-за большего количества ядер. Однако при тестировании пользовательского приложения на двухъядерном ЦП вы заметите разницу в производительности между двумя машинами.
Параметры | Основной | Потоки |
---|---|---|
Определение | Ядро ЦП – это физический аппаратный компонент. | Поток – это виртуальный компонент, который используется для управления задачами. |
Процесс | ЦП обращается ко второму потоку только в том случае, если информация, отправленная первым потоком, ненадежна. | Несколько вариантов взаимодействия ЦП с несколькими потоками. |
Развертывание | Это может быть достигнуто с помощью операции чередования. | Выполняется за счет использования нескольких процессоров ЦП |
Выгода | ЦП увеличивает объем работы, выполняемой за раз. | Потоки минимизируют затраты на развертывание и увеличивают количество откликов графического интерфейса. |
Использовать | Он использует переключение контента. | Потоки используют несколько процессоров для управления различными процессами. |
Блоки обработки | Для правильной работы требуется один процессор. | Для выполнения любой задачи требуется несколько процессоров. |
Ограничения | Потребляйте больше энергии при увеличении нагрузки | В случае одновременного выполнения нескольких процессов мы можем ощутить координацию между ОС, ядром и потоками. |
Пример | Он может выполнять несколько приложений одновременно. | Запуск поисковых роботов в кластере. |
Заключительные слова
Если вы планируете в ближайшее время купить выделенную машину, возможно, вам стоит подумать о компромиссе между потоками и ядрами или потоками. Конечно, вы хотели бы получить что-то более эффективное с учетом объема данных и трафика веб-сайтов, которые вы планируете разместить на выделенном сервере.
Вы можете обнаружить, что приложение, использующее большое количество ядер, может одновременно выполнять несколько задач без каких-либо зависаний или задержек. Но предположим, что используемая система предназначена для очень простых приложений или однопоточных приложений. В этом случае желательно, чтобы вы выбрали более простой аппаратный компонент более низкого уровня для достижения лучших результатов.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Процессор: потоки или ядра
На рынке компьютерных комплектующих присутствует немало процессоров, у которых число потоков больше числа физических ядер. В некоторых задачах эти «виртуальные ядра» могут дать существенный прирост в производительности, в других они практически бесполезны.
Многоядерность и гиперпоточность
Поток (применительно к процессору), или виртуальное ядро – результат реализации вычислений, при котором одно физическое ядро способно программно разделять свою производительность и работать над несколькими последовательностями команд одновременно. Простыми словами, ЦП делает вид для операционной системы и программ, что у него больше ядер, чем есть на самом деле. Убедиться в этом можно, открыв диспетчер устройств или другую программу для мониторинга комплектующих.
Гиперпоточность позволяет распараллеливать вычисления более эффективно – если одно виртуальное ядро завершило работу над своей задачей и находится в режиме ожидания, его ресурсы может использовать другое. В случаях, когда гиперпоточность не поддерживается, эти ресурсы простаивают. Таким образом, поддержка виртуальных ядер может ускорить выполнение некоторых задач, хотя, разумеется, она не так хороша, как наличие дополнительных физических, и удвоения производительности ожидать не стоит.
Иллюстрация концепции потоков/виртуальных ядер:
Рассмотрим следующий упрощенный пример: если двухъядерный процессор с двумя потоками работает с четырьмя последовательностями команд одновременно, а производительность одного ядра для одной последовательности избыточна, то общая производительность будет ниже, чем в случае, если на месте такого процессора будет вариант с двумя ядрами, но с четырьмя потоками, поскольку на переключение между задачами тратится дополнительное время, и часть ресурсов иногда простаивает. А вот если вычислительных ресурсов одного потока недостаточно для выполнения одной последовательности, то виртуальные ядра почти не помогут – нужны дополнительные физические.
Распараллеливание нагрузки при помощи технологии Intel Hyper-Threading
Немного истории
Когда-то процессоры были одноядерными и однопоточными. Если требовалось эффективно распараллеливать вычисления (в серверном сегменте, рабочих станциях) использовались материнские платы с несколькими процессорными разъемами. Соответственно, материнке требовалась возможность соединять все процессоры с другими комплектующими (например, оперативной памятью). По сравнению с современной реализацией, возникали дополнительные задержки, возрастали энергозатраты.
Развитие архитектуры началось с гиперпоточности, а в дальнейшем на одном кристалле производители стали размещать и несколько физических ядер. Сейчас оба основных производителя центральных процессоров для ПК (Intel и AMD) выпускают модели с двумя и более физическими ядрами, как с поддержкой виртуальных ядер, так и без нее.
Потоки или ядра?
Центральный процессор – один из ключевых компонентов системы, влияющих на ее производительность в целевых задачах, а также на удобство использования компьютера. Часто у пользователей, желающих собрать систему, возникает вопрос: на что ориентироваться при выборе ЦП? Стоит ли переплачивать за дополнительные потоки/виртуальные ядра?
Наибольшую выгоду виртуальные ядра приносят в рабочих задачах, подверженных эффективному распараллеливанию. К ним относятся, например, архивация файлов, обработка фотографий, рендеринг видео, моделирование. Таким образом, польза дополнительных потоков для компьютера, который будет использоваться в первую очередь для игр или медиа, сомнительна. Впрочем, если параллельно с играми будут выполняться и другие задачи, такие как стриминг, запись/обработка видео, скачивание/раздача файлов при помощи торрент-клиента, антивирусная проверка, она возрастает. В подобных ситуациях виртуальные ядра помогают снять фоновую нагрузку с физических.
Впрочем, кратного роста вычислительной мощи ждать все равно не стоит, и для типичных домашних сценариев использования переплата за виртуальные ядра часто будет неоправданной. Другое дело – если компьютер используется для профессиональной деятельности, и применяются программы, хорошо работающие с гиперпоточностью – прирост в производительности при правильной оптимизации может составлять десятки процентов.
Подытожим : если речь идет о домашнем игровом или мультимедийном компьютере, не стоит ждать чудес от виртуальных ядер, и, если за них придется доплатить ощутимую сумму, лучше рассмотреть вариант с дополнительными физическими, или вложить деньги в другие комплектующие. Если же система будет использоваться для работы – прирост может быть значительным, поэтому стоит ознакомиться с тестами гиперпоточных ЦП для конкретного вида задач.
Процессоры, ядра и потоки. Топология систем
В этой статье я попытаюсь описать терминологию, используемую для описания систем, способных исполнять несколько программ параллельно, то есть многоядерных, многопроцессорных, многопоточных. Разные виды параллелизма в ЦПУ IA-32 появлялись в разное время и в несколько непоследовательном порядке. Во всём этом довольно легко запутаться, особенно учитывая, что операционные системы заботливо прячут детали от не слишком искушённых прикладных программ.
Используемая далее терминология используется в документации процессорам Intel. Другие архитектуры могут иметь другие названия для похожих понятий. Там, где они мне известны, я буду их упоминать.
Цель статьи — показать, что при всём многообразии возможных конфигураций многопроцессорных, многоядерных и многопоточных систем для программ, исполняющихся на них, создаются возможности как для абстракции (игнорирования различий), так и для учёта специфики (возможность программно узнать конфигурацию).
Процессор
Конечно же, самый древний, чаще всего используемый и неоднозначный термин — это «процессор».
В современном мире процессор — это то (package), что мы покупаем в красивой Retail коробке или не очень красивом OEM-пакетике. Неделимая сущность, вставляемая в разъём (socket) на материнской плате. Даже если никакого разъёма нет и снять его нельзя, то есть если он намертво припаян, это один чип.
Мобильные системы (телефоны, планшеты, ноутбуки) и большинство десктопов имеют один процессор. Рабочие станции и сервера иногда могут похвастаться двумя или больше процессорами на одной материнской плате.
Поддержка нескольких центральных процессоров в одной системе требует многочисленных изменений в её дизайне. Как минимум, необходимо обеспечить их физическое подключение (предусмотреть несколько сокетов на материнской плате), решить вопросы идентификации процессоров (см. далее в этой статье, а также мою предыдущую заметку), согласования доступов к памяти и доставки прерываний (контроллер прерываний должен уметь маршрутизировать прерывания на несколько процессоров) и, конечно же, поддержки со стороны операционной системы. Я, к сожалению, не смог найти документального упоминания момента создания первой многопроцессорной системы на процессорах Intel, однако Википедия утверждает, что Sequent Computer Systems поставляла их уже в 1987 году, используя процессоры Intel 80386. Широко распространённой поддержка же нескольких чипов в одной системе становится доступной, начиная с Intel® Pentium.
Если процессоров несколько, то каждый из них имеет собственный разъём на плате. У каждого из них при этом имеются полные независимые копии всех ресурсов, таких как регистры, исполняющие устройства, кэши. Делят они общую память — RAM. Память может подключаться к ним различными и довольно нетривиальными способами, но это отдельная история, выходящая за рамки этой статьи. Важно то, что при любом раскладе для исполняемых программ должна создаваться иллюзия однородной общей памяти, доступной со всех входящих в систему процессоров.
К взлёту готов! Intel® Desktop Board D5400XS
Исторически многоядерность в Intel IA-32 появилась позже Intel® HyperThreading, однако в логической иерархии она идёт следующей.
Казалось бы, если в системе больше процессоров, то выше её производительность (на задачах, способных задействовать все ресурсы). Однако, если стоимость коммуникаций между ними слишком велика, то весь выигрыш от параллелизма убивается длительными задержками на передачу общих данных. Именно это наблюдается в многопроцессорных системах — как физически, так и логически они находятся очень далеко друг от друга. Для эффективной коммуникации в таких условиях приходится придумывать специализированные шины, такие как Intel® QuickPath Interconnect. Энергопотребление, размеры и цена конечного решения, конечно, от всего этого не понижаются. На помощь должна прийти высокая интеграция компонент — схемы, исполняющие части параллельной программы, надо подтащить поближе друг к другу, желательно на один кристалл. Другими словами, в одном процессоре следует организовать несколько ядер, во всём идентичных друг другу, но работающих независимо.
Первые многоядерные процессоры IA-32 от Intel были представлены в 2005 году. С тех пор среднее число ядер в серверных, десктопных, а ныне и мобильных платформах неуклонно растёт.
В отличие от двух одноядерных процессоров в одной системе, разделяющих только память, два ядра могут иметь также общие кэши и другие ресурсы, отвечающие за взаимодействие с памятью. Чаще всего кэши первого уровня остаются приватными (у каждого ядра свой), тогда как второй и третий уровень может быть как общим, так и раздельным. Такая организация системы позволяет сократить задержки доставки данных между соседними ядрами, особенно если они работают над общей задачей.
Микроснимок четырёхядерного процессора Intel с кодовым именем Nehalem. Выделены отдельные ядра, общий кэш третьего уровня, а также линки QPI к другим процессорам и общий контроллер памяти.
Гиперпоток
До примерно 2002 года единственный способ получить систему IA-32, способную параллельно исполнять две или более программы, состоял в использовании именно многопроцессорных систем. В Intel® Pentium® 4, а также линейке Xeon с кодовым именем Foster (Netburst) была представлена новая технология — гипертреды или гиперпотоки, — Intel® HyperThreading (далее HT).
Ничто не ново под луной. HT — это частный случай того, что в литературе именуется одновременной многопоточностью (simultaneous multithreading, SMT). В отличие от «настоящих» ядер, являющихся полными и независимыми копиями, в случае HT в одном процессоре дублируется лишь часть внутренних узлов, в первую очередь отвечающих за хранение архитектурного состояния — регистры. Исполнительные же узлы, ответственные за организацию и обработку данных, остаются в единственном числе, и в любой момент времени используются максимум одним из потоков. Как и ядра, гиперпотоки делят между собой кэши, однако начиная с какого уровня — это зависит от конкретной системы.
Я не буду пытаться объяснить все плюсы и минусы дизайнов с SMT вообще и с HT в частности. Интересующийся читатель может найти довольно подробное обсуждение технологии во многих источниках, и, конечно же, в Википедии. Однако отмечу следующий важный момент, объясняющий текущие ограничения на число гиперпотоков в реальной продукции.
Ограничения потоков
В каких случаях наличие «нечестной» многоядерности в виде HT оправдано? Если один поток приложения не в состоянии загрузить все исполняющие узлы внутри ядра, то их можно «одолжить» другому потоку. Это типично для приложений, имеющих «узкое место» не в вычислениях, а при доступе к данным, то есть часто генерирующих промахи кэша и вынужденных ожидать доставку данных из памяти. В это время ядро без HT будет вынуждено простаивать. Наличие же HT позволяет быстро переключить свободные исполняющие узлы к другому архитектурному состоянию (т.к. оно как раз дублируется) и исполнять его инструкции. Это — частный случай приёма под названием latency hiding, когда одна длительная операция, в течение которой полезные ресурсы простаивают, маскируется параллельным выполнением других задач. Если приложение уже имеет высокую степень утилизации ресурсов ядра, наличие гиперпотоков не позволит получить ускорение — здесь нужны «честные» ядра.
Типичные сценарии работы десктопных и серверных приложений, рассчитанных на машинные архитектуры общего назначения, имеют потенциал к параллелизму, реализуемому с помощью HT. Однако этот потенциал быстро «расходуется». Возможно, по этой причине почти на всех процессорах IA-32 число аппаратных гиперпотоков не превышает двух. На типичных сценариях выигрыш от использования трёх и более гиперпотоков был бы невелик, а вот проигрыш в размере кристалла, его энергопотреблении и стоимости значителен.
Другая ситуация наблюдается на типичных задачах, выполняемых на видеоускорителях. Поэтому для этих архитектур характерно использование техники SMT с бóльшим числом потоков. Так как сопроцессоры Intel® Xeon Phi (представленные в 2010 году) идеологически и генеалогически довольно близки к видеокартам, на них может быть четыре гиперпотока на каждом ядре — уникальная для IA-32 конфигурация.
Логический процессор
Из трёх описанных «уровней» параллелизма (процессоры, ядра, гиперпотоки) в конкретной системе могут отсутствовать некоторые или даже все. На это влияют настройки BIOS (многоядерность и многопоточность отключаются независимо), особенности микроархитектуры (например, HT отсутствовал в Intel® Core™ Duo, но был возвращён с выпуском Nehalem) и события при работе системы (многопроцессорные сервера могут выключать отказавшие процессоры в случае обнаружения неисправностей и продолжать «лететь» на оставшихся). Каким образом этот многоуровневый зоопарк параллелизма виден операционной системе и, в конечном счёте, прикладным приложениям?
Далее для удобства обозначим количества процессоров, ядер и потоков в некоторой системе тройкой (x, y, z), где x — это число процессоров, y — число ядер в каждом процессоре, а z — число гиперпотоков в каждом ядре. Далее я буду называть эту тройку топологией — устоявшийся термин, мало что имеющий с разделом математики. Произведение p = xyz определяет число сущностей, именуемых логическими процессорами системы. Оно определяет полное число независимых контекстов прикладных процессов в системе с общей памятью, исполняющихся параллельно, которые операционная система вынуждена учитывать. Я говорю «вынуждена», потому что она не может управлять порядком исполнения двух процессов, находящихся на различных логических процессорах. Это относится в том числе к гиперпотокам: хотя они и работают «последовательно» на одном ядре, конкретный порядок диктуется аппаратурой и недоступен для наблюдения или управления программам.
Чаще всего операционная система прячет от конечных приложений особенности физической топологии системы, на которой она запущена. Например, три следующие топологии: (2, 1, 1), (1, 2, 1) и (1, 1, 2) — ОС будет представлять в виде двух логических процессоров, хотя первая из них имеет два процессора, вторая — два ядра, а третья — всего лишь два потока.
Windows Task Manager показывает 8 логических процессоров; но сколько это в процессорах, ядрах и гиперпотоках?
Linux top показывает 4 логических процессора.
Это довольно удобно для создателей прикладных приложений — им не приходится иметь дело с зачастую несущественными для них особенностями аппаратуры.
Программное определение топологии
Конечно, абстрагирование топологии в единственное число логических процессоров в ряде случаев создаёт достаточно оснований для путаницы и недоразумений (в жарких Интернет-спорах). Вычислительные приложения, желающие выжать из железа максимум производительности, требуют детального контроля над тем, где будут размещены их потоки: поближе друг к другу на соседних гиперпотоках или же наоборот, подальше на разных процессорах. Скорость коммуникаций между логическими процессорами в составе одного ядра или процессора значительно выше, чем скорость передачи данных между процессорами. Возможность неоднородности в организации оперативной памяти также усложняет картину.
Информация о топологии системы в целом, а также положении каждого логического процессора в IA-32 доступна с помощью инструкции CPUID. С момента появления первых многопроцессорных систем схема идентификации логических процессоров несколько раз расширялась. К настоящему моменту её части содержатся в листах 1, 4 и 11 CPUID. Какой из листов следует смотреть, можно определить из следующей блок-схемы, взятой из статьи [2]:
Я не буду здесь утомлять всеми подробностями отдельных частей этого алгоритма. Если возникнет интерес, то этому можно посвятить следующую часть этой статьи. Отошлю интересующегося читателя к [2], в которой этот вопрос разбирается максимально подробно. Здесь же я сначала кратко опишу, что такое APIC и как он связан с топологией. Затем рассмотрим работу с листом 0xB (одиннадцать в десятичном счислении), который на настоящий момент является последним словом в «апикостроении».
APIC ID
В настоящий момент ширина числа, хранящегося в APIC ID, достигла полных 32 бит, хотя в прошлом оно было ограничено 16, а ещё раньше — только 8 битами. Нынче остатки старых дней раскиданы по всему CPUID, однако в CPUID.0xB.EDX[31:0] возвращаются все 32 бита APIC ID. На каждом логическом процессоре, независимо исполняющем инструкцию CPUID, возвращаться будет своё значение.
Выяснение родственных связей
Значение APIC ID само по себе ничего не говорит о топологии. Чтобы узнать, какие два логических процессора находятся внутри одного физического (т.е. являются «братьями» гипертредами), какие два — внутри одного процессора, а какие оказались и вовсе в разных процессорах, надо сравнить их значения APIC ID. В зависимости от степени родства некоторые их биты будут совпадать. Эта информация содержится в подлистьях CPUID.0xB, которые кодируются с помощью операнда в ECX. Каждый из них описывает положение битового поля одного из уровней топологии в EAX[5:0] (точнее, число бит, которые нужно сдвинуть в APIC ID вправо, чтобы убрать нижние уровни топологии), а также тип этого уровня — гиперпоток, ядро или процессор, — в ECX[15:8].
У логических процессоров, находящихся внутри одного ядра, будут совпадать все биты APIC ID, кроме принадлежащих полю SMT. Для логических процессоров, находящихся в одном процессоре, — все биты, кроме полей Core и SMT. Поскольку число подлистов у CPUID.0xB может расти, данная схема позволит поддержать описание топологий и с бóльшим числом уровней, если в будущем возникнет необходимость. Более того, можно будет ввести промежуточные уровни между уже существующими.
Важное следствие из организации данной схемы заключается в том, что в наборе всех APIC ID всех логических процессоров системы могут быть «дыры», т.е. они не будут идти последовательно. Например, во многоядерном процессоре с выключенным HT все APIC ID могут оказаться чётными, так как младший бит, отвечающий за кодирование номера гиперпотока, будет всегда нулевым.
Отмечу, что CPUID.0xB — не единственный источник информации о логических процессорах, доступный операционной системе. Список всех процессоров, доступный ей, вместе с их значениями APIC ID, кодируется в таблице MADT ACPI [3, 4].
Операционные системы и топология
Операционные системы предоставляют информацию о топологии логических процессоров приложениям с помощью своих собственных интерфейсов.
В FreeBSD топология сообщается через механизм sysctl в переменной kern.sched.topology_spec в виде XML:
В MS Windows 8 сведения о топологии можно увидеть в диспетчере задач Task Manager.
Также их предоставляет консольная утилита Sysinternals Coreinfo и API вызов GetLogicalProcessorInformation.
Полная картина
Проиллюстрирую ещё раз отношения между понятиями «процессор», «ядро», «гиперпоток» и «логический процессор» на нескольких примерах.
Система (2, 2, 2)
Система (2, 4, 1)
Система (4, 1, 1)
Прочие вопросы
В этот раздел я вынес некоторые курьёзы, возникающие из-за многоуровневой организации логических процессоров.
Как я уже упоминал, кэши в процессоре тоже образуют иерархию, и она довольно сильно связано с топологией ядер, однако не определяется ей однозначно. Для определения того, какие кэши для каких логических процессоров общие, а какие нет, используется вывод CPUID.4 и её подлистов.
Лицензирование
Некоторые программные продукты поставляются числом лицензий, определяемых количеством процессоров в системе, на которой они будут использоваться. Другие — числом ядер в системе. Наконец, для определения числа лицензий число процессоров может умножаться на дробный «core factor», зависящий от типа процессора!
Виртуализация
Системы виртуализации, способные моделировать многоядерные системы, могут назначить виртуальным процессорам внутри машины произвольную топологию, не совпадающую с конфигурацией реальной аппаратуры. Так, внутри хозяйской системы (1, 2, 2) некоторые известные системы виртуализации по умолчанию выносят все логические процессоры на верхний уровень, т.е. создают конфигурацию (4, 1, 1). В сочетании с особенностями лицензирования, зависящими от топологии, это может порождать забавные эффекты.