опора трубопровода к стене
Крепление к строительным конструкциям трубопроводов разного вида
Основные разновидности опор трубопроводов
Основным критерием при разделении опор на подвиды является их подвижность или неподвижность.
Подвижные опоры делят на:
Неподвижные опоры подразделяют на:
Каждый из видов опор изготавливается в строгом соответствии с требованиями соответствующих ГОСТов и ОСТов.
Виды крепежных конструкций
Несущие крепежные конструкции подразделяются на следующие типы:
Виды крепления трубопроводов к стене
Требования к опорам и подвескам
Если фиксация происходит между двух неподвижных опор, перемещения, которые могут происходить в результате смены температурных режимов, монтажных растягов или смещения опор, должны самокомпенсироваться. Но такой компенсирующей способности, как показывают расчеты, подчас бывает недостаточно. В этом случае должны устанавливаться специальные компенсаторы.
Хомут для крепления труб оснащен винтом/болтом
Изготавливают их из труб такого же вида и диаметра, что и сооружение в целом. Чаще всего их выполняют в форме букв «П» или «Г».
Если конструкция закреплена неподвижно, крепления должны выдерживать вес самого трубопровода, жидкости, которая по нему перемещается, а также осевые нагрузки, порожденные тепловой деформацией, вибрациями и гидравлическими ударами. При выполнении монтажа изделий из полимеров чаще всего используют подвижные опоры.
Если же монтаж осуществляется в неподвижных опорах, к трубам приваривают ограничительные кольца или сегменты в 10-20 мм шириной, которые выполняют из кусков труб такого же пластика. Эти сегменты или кольца должны располагаться по обеим сторонам от опоры.
Выбор элементов крепления
Подходящие крепления подбирают с учетом многих факторов. Выбор зависит от местоположения участка монтажа, от предназначения конкретной системы и так далее.
Крепление пластиковой трубы
Иногда трубу следует изолировать от источника холода или тепла. Если использовать простой зажим, фиксирующий участок, то необходимого для решения поставленной задачи промежутка от прилегающей поверхности он не обеспечит. Зато, например, кольцевая опора, у которой имеется резьбовой удлинитель и пластина для закрепления на опорной поверхности, полностью устранит возникающую проблему.
Если закреплять приходится тяжелые чугунные трубы, то используют специальный крепеж, который выдерживает большие нагрузки. Для вертикально расположенных систем его устанавливают на перекрытиях. Горизонтально ориентированные системы закрепляют даже не по одной, а группами труб, уложенных на консоль.
Грамотный подход к выбору и размещению крепежных элементов позволяет долго и эффективно эксплуатировать трубопровод, не опасаясь возникновения аварийных ситуаций. Но не стоит забывать и об экономической составляющей данной проблемы. Ведь превышение необходимого и достаточного числа элементов может привести к неоправданному удорожанию конструкции и усложнению монтажных работ.
Назначение опор трубопроводов
Основной функцией неподвижных опор является обеспечение недвижности и самому трубопроводу. Они не позволяют ему перемещаться ни в одном направлении. Трубопровод разделяется на участки, нагрузки с которых принимают на себя опоры.
Они же обеспечивают поглощение его линейных удалений по принципу компенсации. На них падает не только вертикальная нагрузка, которая складывается из веса изоляционных материалов, самого трубопровода и транспортируемого по нему продукта, а так же возможных осадков и наледи, но и горизонтальная, возникающая при деформациях трубопровода от перепадов температур.
Основные и специальные свойства крепежа
Вертикальные и горизонтальные трубопроводы прикрепляются к строительным конструкциям посредством крепежных элементов – подвесок и опор. В процессе монтажа участвуют кронштейны, планки, хомуты, консоли и закладные детали крепления трубопроводов. Крепеж должен соответствовать следующим основным требованиям:
Кроме того, монтаж опорных конструкций для крепления трубопроводов не должен вызывать затруднений. Нужно, чтобы работать с подвесками и опорами было легко и просто. Выполнение этого требования обеспечивает отличную эргономичность рабочих процессов.
Специальные требования предъявляются к несущим конструкциям, когда нужно учитывать специфику материала, из которого изготавливаются трубы. При закреплении полимерных трубопроводов необходимо брать в расчет такие особые требования.
Элементы для крепления гидравлических трубопроводов производят в двух конструктивных вариантах. Без сплошного основания, если температура окружающей воздушной среды или перемещаемой жидкости не превышает 30°С, и с основанием при более высоких температурах.
Подвески трубопроводов
Подвески трубопроводов – это одно из средств крепления трубопроводов, элемент их конструкции, от прочности и качества которых зависит её надёжность в целом.
Подвески трубопроводов закрепляют между перекрытиями зданий и опорными конструкциями с помощью приварных проушин, болтов и тяг. Длина тяги определяется согласно требованиям и регламентируется в проекте. Она может составлять от 150 до 2000 мм (интервал между размерами составляет 500 мм). Все типы подвесок трубопроводов являются стандартизированными.
Материалы и изделия для трубопроводов
Опоры предназначены для крепления горизонтальных стальных трубопроводов. По назначению и устройству их подразделяют на неподвижные и подвижные. По способу крепления трубы различают приварные и хомутовые опоры. В отдельных случаях вместо хомутов применяют скобы. Неподвижные опоры должны жестко удерживать трубу и не допускать ее перемещения. Такие опоры воспринимают вертикальные нагрузки от веса трубопровода и среды, горизонтальные (осевые) нагрузки от тепловых деформаций трубопровода и сил трения подвижных опор, а также нагрузки от гидравлических ударов, вибрации и пульсации. Корпуса неподвижных опор приваривают или прикрепляют болтами к несущим конструкциям трубопровода. В хомутовых неподвижных опорах для предотвращения проскальзывания трубы в опоре к трубе приварены специальные упоры. В зависимости от величины осевых сил, воспринимаемых опорой, упоры могут быть выполнены с одним или двумя хомутами или скобами.
Подвижные опоры должны поддерживать трубопровод и обеспечивать свободное его перемещение под влиянием температурных деформаций. Они воспринимают только вертикальную нагрузку от веса трубопровода, веса продукта и изоляции. Подвижные опоры подразделяют на скользящие, катковые, направляющие, пружинные, шариковые и др. Наибольшее распространение получили скользящие опоры, которые перемещаются вместе с трубой по поверхности несущих конструкций трубопровода. С целью уменьшения трения между пятой опоры и опорной поверхностью используют катковые (роликовые) опоры; они являются разновидностью скользящих опор, установленных на катки. Направляющими опорами являются опоры с направляющими планками или бескорпусные хомутовые опоры, в которых труба скользит непосредственно по поверхности несущей конструкции и удерживается от поперечного смещения хомутом.
Пружинные опоры применяют в трубопроводах, подвергающихся вибрационным нагрузкам, так как они хорошо поглощают вибрацию. Шариковые опоры используют в местах поворота трубопровода большого диаметра, где необходимо обеспечить свободное его перемещение вдоль обеих горизонтальных осей. Изготовляют опоры преимущественно из спокойной стали марки Ст. 3 холодной штамповкой. Подвески (подвесные опоры) применяют для крепления горизонтальных трубопроводов. Подвески крепятся к кронштейнам, консолям, перекрытию здания с помощью тяг с болтами или приварных проушин. Размеры тяг уточняют по месту. В ряде случаев в подвесках используют тяги с муфтами правой и левой резьбы, регулируемые по длине.
Горизонтальные трубопроводы, имеющие вертикальные участки, удлинение которых воспринимается горизонтальной ветвью, устанавливают на пружинных подвесках. Применение жестких подвесок для крепления вертикальных трубопроводов не допускается, так как при температурных удлинениях нагрузка на них будет неравномерной. Пружинные подвески используют также в трубопроводах, подвергающихся вибрационным нагрузкам. Опорные несущие конструкции для трубопроводов в зависимости от места их положения, величины действующих нагрузок и других факторов применяют в виде мачт и стоек, эстакад, кронштейнов, консолей.
Кронштейны и консоли
Такие крепёжные элементы, как консоли и кронштейны применяются в основном для трубопроводов внутри помещений (цеховых, заводских, подвальных и т.п.). Подвижные или неподвижные опоры крепятся на сами кронштейны и опоры, а при необходимости к ним дополнительно прикрепляются подвески трубопроводов. В некоторых случаях кронштейны в сочетании с хомутами, скобами или иными устройствами выступают в роли самостоятельной опоры под трубопровод. Этот вариант приемлем при условии, что температура внешней среды, в которой происходит эксплуатация, не будет превышать 100°С.
По способности воспринимать нагрузки кронштейны подразделяют на двойные и одинарные. И те, и другие либо крепят к стенам зданий или сооружений, либо монтируют непосредственно в сами стены. Так же допускается крепление кронштейнов к колоннам и иным внешним конструкциям.
В зависимости от назначения кронштейны могут иметь различную геометрическую форму. Немалое влияние на то, какой она будет, оказывает пространственное расположение трубопровода. Если к кронштейну крепится лишь одна труба, он называется индивидуальным, если же две и более – групповым.
При закреплении кронштейнов или консолей в стены из кирпича, длина утапливаемой в стену части должна быть более 250 мм. Для крепления их к металлоконструкциям используют сварку или болты, а к железобетонным конструкциям – шпильки (стяжные болты).
Во время укладки трубопроводов на консолях и кронштейнах необходимо следить, чтобы расстояние от них до зданий (сооружений) выдерживалось согласно плану работ. При групповом креплении, выдерживать установленное расстояние между линиями так же очень важно. В случаях, если трубопроводы будут оснащены дополнительной внешней изоляцией, её толщину так же необходимо учитывать.
Различия опор
Опоры неподвижные различаются в зависимости от типа прокладки трубопровода, для которого они предназначены – для внешней системы или подземной. В первом случае используется оцинкованная оболочка, во втором применяется полиэтилен.
Конструкция неподвижных опор состоит из следующих элементов. Основную несущую нагрузку выполняет стальная труба, предупреждающее свободное нежелательное перемещение трубопровода. Для ее исполнения применяется горячекатаный стальной лист толщиной от 25 мм. Для защиты внешней оцинкованной или полиэтиленовой оболочки используются стальные стаканы, а для гидроизоляции – термоусадочная лента.
Расстояние между опорами стальных трубопроводов таблица снип. Основные требования к производству работ
Инженерное сооружение, предназначенное для транспортировки различных веществ, называют трубопроводом. По трубопроводам подаётся вода и газ, нефть и нефтепродукты, различные жидкие или газообразные вещества. В зависимости от среды, перемещаемой по трубопроводу, от условий эксплуатации и других требований трубопроводы могут изготавливать из различных материалов: металла, бетона, асбеста, керамики, полимерных материалов.
Сварные соединения деталей трубопровода являются неразборными и применяются для сварки газопроводов, нефтепроводов, водопроводов, при транспортировке теплоносителей. К выполнению таких сварных соединений предъявляются особые требования.
Расстояние между опорами для стальных трубопроводов приведены в таблице 1
Таблица 1. Шаг креплений для стальных трубопроводов
Условный проход трубы Dу, мм | ГОСТ | максимальное расстояние между опорами трубопроводов на горизонтальных участках, м | |
для неизолированных трубопроводов | для изолированных трубопроводов | ||
15 | 3262-75 | 2,5 | 1,5 |
20 | 3262-75 | 3,0 | 2,0 |
25 | 3262-75 | 3,5 | 2,0 |
32 | 3262-75 | 4,0 | 2,5 |
40 | 3262-75 | 4,5 | 3,0 |
50 | 3262-75 | 5,0 | 3,0 |
65 | 10704-76 | 6,0 | 4,0 |
80 | 10704-76 | 6,0 | 4,0 |
100 | 8732-78 | 6,5 | 4,5 |
125 | 8732-78 | 7,0 | 5,0 |
150 | 10704-76 | 8,0 | 6,0 |
200 | 10704-76 | 9,0 | 9,0 |
250 | 10704-76 | 9,0 | 9,0 |
Согласно СНиП 3.05.01-85:
Главная > Статьи > Расстояние между опорами трубопроводов
Расстояние между опорами трубопроводов во многом зависит от принципа их работы. По данному критерию опоры делятся на подвижные и неподвижные. На неподвижных опорах трубы закреплены без возможности смещения, в то время как конструкции подвижных опор предоставляют закреплённым на ней объектам некоторую свободу перемещения по направляющим. Это необходимо в местности с сильными перепадами температур, вызывающими деформацию и смещение труб.
Подвижные опоры в конструкциях трубопроводов бывают:
В катковых опорах для перемещения труб предусмотрены специальные катковые блоки. Такие опоры целесообразно применять в случае отделённых друг от дуга высоких или низких опор, а также вдоль стен туннеля или здания, с использованием кронштейнов и каркасов. Диаметр трубы Ду при этом должен быть больше 200 мм. Если трубопровод прокладывается в непроходном канале, применение катковых опор невозможно.
Опоры, где для перемещения труб не используется ничего, кроме свободного пространства, а ограничителем служит сила трения, называют скользящими. При установке труб со значениями Ду от 25 до 150 мм, скользящим опорам отдаётся предпочтение при любом способе прокладки трубопровода. Если диаметр Ду находится в диапазоне от 200 до 1200 мм, использование скользящих опор возможно, если участок представляет собой полупроходной или непроходной канал, а также в случае прокладки нижним рядам в туннеле.
Прокладка труб с диаметром Ду более 200 мм над землёй с использованием эстакад предусматривает применение как катковых, так и скользящих опор.
Использование подвесных опор принято в условиях надземной прокладки с применением растяжек и эстакад. Также эти опоры применимы, когда подвешивается труба к трубе, там, где происходит самокомпенсация или установлены П-образные компенсаторы.
Если осуществляется бесканальная прокладка труб, или используются сальниковые компенсаторы, применение подвижных опор не предусматривается.
Как же устанавливается необходимую дистанцию между подвижными опорами.? Оно базируется на расчётах прочности и прогиба труб. Результат определяется способом прокладки, диаметром труб и параметрами рабочей среды. Способы подсчётов изложены в приложении №4 СНиП 2.04.12-86 «Расстояние между опорами трубопроводов». Обычно высчитываются следующие величины пролёта между опорами:
Расстояния между неподвижными опорами определяются схематическими особенностями того или иного трубопровода, его рабочей средой и режимом эксплуатации. Опоры должны обязательно присутствовать возле каждого ответвления или запорного участка, а в остальных местах — размещаться в соответствии наличием компенсаторов и самокомпенсацией. Расстояние между ними определяется проектными требованиями.
Расстояние между опорами трубопроводов высчитывается, исходя из предполагаемых внешних усилий и моментов. Учитываются трение, внутреннее давление и компенсация. А также вес трубопровода и транспортируемой субстанции, пыль, ветер, лёд и т.п. Если величина температуры задаётся отличной от +20 градусов, необходимо использовать специальные коэффициенты.
Очевидно,что при таком подходе расчёты будут индивидуальными. В качестве примера можно взять усреднённые значения расстояний между опорами неизолированных стальных труб в зависимости от их диаметра:
Представленные значения для данных диаметров труб максимальны. На основании расчётной методики при проектировании часто используются готовые таблицы.
Устанавливаемые при проектировании дистанции между опорами не должны превышать величины, полученные из расчётов. Однако их уменьшение допустимо, когда речь идёт об установке опоры возле ответвления, запорного устройства и т.д. Дополнительные расчёты требуются в том случае, если опоры трубопровода предполагается установить на фундаменты.
Нормы расстояния между креплениями различных труб
Трубопровод фиксируют к различным поверхностям (пол, стена, потолок) посредством специальных креплений. Они представляют собой хомуты, которые обхватывает трубу по диаметру. Отличительной чертой этого приспособления считается его надежное прикрепление к стене. В дополнение к нему необходимы болты с гайками.
Хомуты для крепления труб
Виды креплений
Крепления имеют несколько разновидностей:
Они нужны для полного присоединения крепления к трубопроводу в разных местах.
Хомут изготавливается из стали или пластика. Существуют крепления, имеющие резиновый уплотнитель. Приспособление может подвергаться демонтажу, если это предусматривается его конструкцией. Такой хомут называют разъемным.
Важные моменты
Есть несколько важных рекомендаций, следование которым позволит избежать ошибок:
Перед тем, как окончательно устанавливать хомуты, необходимо провести расчет соединений с патрубками, исключением являются мягкие виды фиксации. Для соединений раструбного характера применяют резиновые кольца. Патрубки компенсационного вида используют лишь один раз.
Таблица установленных параметров
Крепление труб из полипропилена
Промежуток между креплениями полипропиленовых труб рассчитывается во время проектирования. Данный шаг вкупе с жесткой фиксацией обеспечивает более длительную эксплуатацию. В этой ситуации как нельзя кстати будут крепления, в конструкции которых имеется резиновая прокладка.
Виды и отличия
Если рассмотреть классификацию опор по конструкции, можно выделить такие виды изделий:
Следует отметить, что все виды, благодаря сочетанию между собой, могут представлять подвижные и неподвижные крепления для трубопроводов.
Неподвижные
Изделия неподвижного типа позволяют удержать сдвиги трубопровода в поперечном или продольном направлении. Как раз неподвижные опоры позволят выполнить наиболее надежное закрепление, не давая возможности трубопроводу перемещаться.
Они используются при формировании и подземной, и наземной систем.
При бесканальной подземной прокладке используются изделия с полиэтиленовой (или ППУ) оболочкой для качественной гидроизоляции. Надземные системы подразумевают использование гидроизоляции из оцинкованной стали.
Неподвижная опора включает такие элементы:
Для таких изделий используется только прочная сталь – расчет регламентирует таблица из ГОСТ для опор трубопроводов 14911-82. Можно выделить три типа стальных листов:
При этом качество отделки может быть обычным или повышенным.
Центраторы представляют собой приспособление, позволяющее упростить центрирование торцов труб при монтаже. Есть их два вида: наружные и внутренние. Наружные, соответственно, выполняют центровку снаружи.
Для изготовления последнего типа нужна морозостойкая сталь. Конструкция – связанные между собой звенья, которые благодаря упорному винту центрируют трубы диаметром от 57 мм до 2,224 м.
Эксцентриковые же центраторы могут использоваться для изделий любого диаметра. С гидродомкратом используются для центровки деформированных или тяжелых труб.
Внутренние центраторы приходится перемещать при помощи грузоподъемной техники, поскольку они массивны. Однако их преимущество состоит в использовании сварки изнутри, благодаря чему можно добиться высокого качества швов.
Неподвижные опоры применяются в северных регионах, где происходят большие колебания температур.
Скользящие
Скользящая (подвижная) опора для трубопроводов широко используется при наземном способе прокладки трубопроводов. Главная задача конструкции – обеспечение допустимого движения труб по вертикальной и горизонтальной оси, а также хомутовые опоры защищают трубопровод от стирания.
Такие подвижные опоры применяются в тех случаях, когда расчет подразумевает частые и большие изменения температур, а значит, имеет место сужение и расширение материала.
Такие подвески заботятся об устойчивости и неподвижности всей системы, компенсируют изменения, вызванные деформациями. Конструкция неподвижной опоры такова:
ГОСТ для скользящей опоры трубопроводов ОСТ 24.125.156-01 регламентирует параметры составных частей.
Можно выделить такие подвижные виды среди конструкций этого типа:
Первые не позволяют трубе перемещаться вертикально вниз. Если расчет использует жесткие подвески, система будет наиболее подвижной. Направляющие крепления лимитируют движение по горизонтали в определенном направлении или вниз.
Чем больше нагрузка на упругую опору, тем выше будет смещение трубы. Скользящие крепления постоянного усилия способны выносить перманентную нагрузку.
Как правило, подвижную опору предварительно красят грунт-эмалью или просто грунтовкой в несколько слоев. Иногда наносится цинковое или порошковое (ППУ) покрытие.
Зачастую для изготовления таких элементов используется углеродистая сталь, для низкотемпературного применения – низколегированная.
Можно выделить такие типы скользящих опор, делая расчет на их конструкцию:
Роликовые опоры позволяют снизить трение между основой и поверхностью трубопровода при его движении. Диэлектрические элементы применяются для низкоуглеродистых или углеродистых стальных труб. Изоляция выполняется из ППУ или смеси порошковых частиц, асбеста и каучука.
Шариковые опоры применяются, если предполагается нестандартное крепление, например, на тепловых электростанциях. Опорное кольцо для трубопроводов дает возможность трубам перемещаться по перечной и продольной оси.
Изделия характеризуются долговечностью, которая, конечно, определяется материалом изготовления.
Расстояние между подвижными креплениями трубопроводов должно быть предусмотрено при проектировании системы. Расчет выполняется индивидуально: зависит от материала, диаметра, длины труб, свойств покрытия (ППУ) опор, параметров транспортируемой среды, требуемой высоты размещения линии.
Использование опор (видео)
О проектировании и расчете
Все работы по обустройству опор для труб должны проводиться в соответствии с требованиями проекта. Иначе действия способны привести к возникновению аварийной ситуации. Расстояния между опорами стальных трубопроводов не должны превышать расчетные данные.
Элементы должны устанавливаться плотно к трубопроводу, поэтому шаг креплений трубопроводов должен быть минимальным. Для получения данных может использоваться таблица расстояния между опорами трубопроводов.
Эти данные рассчитываются на основанные полученных параметров по прочности, прогибу, зависят от диаметра труб, особенностей теплоносителя и способа прокладки трубопровода.
Опоры для крепления трубопроводов устанавливаются на дне каналов, но без препятствия стоку воды. Иногда возводятся фундаменты под опоры трубопроводов, поэтому их расчет также необходим.
Железобетонные опоры трубопроводов требуют подготовки основания для монтажа. Неподвижные изделия зачастую устанавливаются возле запорной арматуры и у ответвлений ППУ трубопровода.
Кроме того, следует учитывать нагрузки, вызванные весом конструкции, транспортируемого вещества, пыли, льда и так далее. Также нужно брать во внимание динамические, ветровые нагрузки.
Поскольку в каждом случае расчет будет индивидуальным, приведем в качестве примера немного усредненных цифр (для стальных труб):
Приведенные выше цифры являются максимальными.
Допустимые нагрузки определяются с учетом температуры в двадцать градусов. Остальные случаи подразумевают использование специального коэффициента.
Что касается стоимости, то цена опоры трубопроводов с ППУ покрытием начинается с отметки в 100-200 рублей (за направляющую конструкцию).
Цена скользящей опоры для трубопроводов – от 300 рублей.
Стоимость выполнения работ по установке опор трубопроводов с ППУ покрытием — от 500 рублей за 1 конструкцию (также актуально для линий небольшого диаметра и с учетом того, что не требуется выполнять работу на большой высоте).
Современная наука по расчетам на прочность пока не может рассчитывать реальные трубопроводы. Поэтому при использовании самых современных программных комплексов приходится иметь дело не с реальной конструкцией трубопровода, а с его компьютерной моделью — расчетной схемой. Неопытный расчетчик обычно видит свою задачу в том, чтобы по возможности точнее воспроизвести чертеж реального трубопровода на экране компьютера. При этом упускается из виду, что между чертежом трубопровода и его расчетной схемой существует большая разница. Расчетная схема — это конструкция трубопровода, освобожденная от несущественных с точки зрения оценки прочности особенностей. Для одной и той же конструкции можно выбрать несколько расчетных схем, в зависимости от того, какая сторона работы трубопровода интересует проектировщика. Применение расчетной схемы является необходимостью, поскольку полный учет всех свойств реальной конструкции невозможен.
В программной системе Старт
Для правильного выбора расчетной схемы нужен определенный опыт. Ниже рассмотрены отдельные характерные примеры.
Пример 1. На рисунке 15 показан трубопровод бесканальной прокладки, который частично проходит в канале. Если в точках А и Б отсутствуют боковые (поперек оси трассы) перемещения, то расчетная схема будет соответствовать показанной на рис. 15б – по всей длине участка в канале стоят скользящие опоры. Если же боковые перемещения на входе-выходе из канала могут иметь место и для их предотвращения ставится ограничитель (например, круглое отверстие с гильзой), то возможны два варианта:
Когда конструкция ограничителя не препятствует повороту сечений трубопровода в горизонтальной плоскости (короткая гильза), имеем расчетную схему, показанную на рис. 15в – две направляющие опоры в точках А и Б. Схема работы направляющей опоры, обеспечивающей свободу перемещений вдоль оси трубы, показана на рис. 15в;
Когда конструкция ограничителя такому повороту препятствует (например, длина гильзы больше диаметра трубопровода), вместо направляющих опор ставятся нестандартные крепления с двухсторонней жесткой угловой связью в горизонтальной плоскости (рис. 15г). Наконец, если участок АБ расположен на длинной прямой трассе и имеет сравнительно малую протяженность, его вообще можно не учитывать, рассматривая точно также, как подземные участки за пределами границ канала.
Пример 2.При реконструкции тепловой сети часть трубопровода с ППУ – изоляцией проходит в старом канале, который засыпается песком (рис. 16а). При отсутствии боковых перемещений на входе – выходе из канала, весь трубопровод можно рассчитывать как защемленный в грунте (рис. 16б). Разница будет только в расчетной глубине заложения: слева и справа от отрезка АБ она будет равна h
1
(от поверхности земли до оси трубы)
,
а между точками А и Б –
h2
(от оси трубы до низа плиты перекрытия канала), так как вес грунта выше перекрытия канала на трубу не передается.
Описанная модель корректна применительно к решению задачи оценки прочности. Если же участок АБ проверяется устойчивость – возможность потери прямолинейной формы равновесия в результате осевого сжатия, то нужно дополнительно учитывать не только вес грунта, лежащего над каналом, но и вес плит перекрытия канала.
Пример 3. Трубопровод проложен в футляре под дорогой. Поскольку все нагрузки от транспорта, вышележащего грунта и т.п., воспринимаются футляром, а напряжения от веса трубопровода, проложенного в футляре, не могу привести к его разрушению в виду практически непрерывного опирания, участок АБ можно рассматривать как невесомый (рис.17а).
На входе – выходе достаточно приложить горизонтальные силы трения Р
тр
, собранные с половины длины
L
Такая схема, хотя и отличается от реальной, но она учитывает наиболее существенные особенности упругой работы и обеспечивает некоторый запас прочности по отношению к участкам трубопровода, защемленным в грунте. Если на концах футляра ставятся диафрагмы для предотвращения боковых перемещений от примыкающих подземных участков, то это моделируется направляющими опорами (рис.17б). Другими вариантами компьютерной модели для этого случая могут служить расчетные схемы, показанные на рисунках 15б и 15в. Правда такое усложнение, по нашему мнению, не будет окупаться точностью получаемых результатов расчета.
Пример 4. Врезка в существующий трубопровод бесканальной прокладки АГ (рис. 18), который был смонтирован с предварительной растяжкой (стартовый компенсатор в точке Б). Распространенной ошибкой проектировщиков в этом случае является совместный расчет старого и нового участка теплопровода с включением в расчетную модель стартового компенсатора. Это верно только в случае, если растяжка участка АГ с помощью предварительного подогрева осуществляется заново.
Рис. 18. Схема врезки в существующий трубопровод
Если же врезка ответвления производится без перекладки существующей трассы, то точка В останется неподвижной и трубопровод от точки А до точки Г будет постоянно находиться в напряженном (растянутом) состоянии. Пусть с помощью предварительного нагрева трубопровод первоначально был растянут на величину Δ, мм
(деформация стартового компенсатора в момент его замыкания). Равномерное по всей длине растяжение можно смоделировать смещениями неподвижных опор в точках А и Г, причем эти смещения должны быть одинаковы по величине
Таким образом, применение любой программной системы по расчету прочности трубопроводов не избавляет специалистов от необходимости много и серьезно думать над тем, как правильно воспринимать реальную конструкцию и как выбирать для нее компьютерную модель для оценки прочности.
При монтаже санитарно-технических устройств необходимо обеспечивать: а) плотность соединений труб между собой, с арматурой и приборами; б) прочность креплений элементов систем; в) прямолинейность прокладки и отсутствие изломов участков трубопроводов; г) исправное действие арматуры, оборудования, предохранительных приспособлений и контрольно-измерительных приборов; д) возможность удаления воздуха и спуска воды из систем; е) соблюдение проектных уклонов трубопроводов; ж) надежное закрепление ограждений приводов у насосов и вентиляторов. Трубы перед монтажом необходимо проверять на отсутствие засоров; временно оставляемые открытыми концы их следует закрывать инвентарными пробками. Разборные соединения на трубопроводах выполняют в местах присоединения их к арматуре и там, где это необходимо по местным условиям. Все разборные соединения трубопроводов, а также арматура, ревизии и прочистки должны находиться в доступных для обслуживания местах. Разборные соединения не допускается располагать в толще стен, перегородок, перекрытий и в других строительных конструкциях зданий. В местах размещения разборных соединений, арматуры, ревизий и прочисток при скрытой прокладке трубопроводов необходимо устраивать люки для доступа. На стояках и ответвлениях расстояние от магистрали до арматуры на них принимают не более 120 мм, Отклонение от вертикальных трубопроводов не должно превышать 2 мм на 1 м высоты трубопровода. При прокладке в бороздах или шахтах трубопроводы не должны примыкать вплотную к поверхности строительных частей здания. Трубопроводы, нагревательные приборы и калориферы при температуре теплоносителя выше 105° С должны отстоять от сгораемых конструкций здания на расстоянии не менее 100 мм или эти конструкции должны иметь несгораемую тепловую изоляцию. Крепление трубопроводов на деревянных пробках не допускается. Места соединения (стыки) трубопроводов не допускается располагать на опорах. Конструкции подвесок, креплений и подвижных опор должны допускать свободное перемещение трубопроводов при изменении температуры теплоносителя и окружающей среды. Расстояние между опорами для стальных трубопроводов на горизонтальных участках принимают в соответствии с данными табл. 177, если в проекте нет специальных указаний.
Таблица 177. РАССТОЯНИЕ МЕЖДУ ОПОРАМИ СТАЛЬНЫХ ТРУБОПРОВОДОВ
В жилых и общественных зданиях стояки из стальных труб прокладывают при высоте этажа до 3 м без креплений, а при высоте этажа более 3 м — с установкой креплений на половине высоты этажа. В производственных зданиях стояки крепят через каждые 3 м. Крепления горизонтальных чугунных канализационных труб устраивают через 2 м, а для стояков — одно крепление на этаж, но не более 3 м между креплениями. Крепления чугунных труб располагают под раструбами. Стальные трубопроводы с теплоносителем, имеющим температуру 40-105° С, в местах пересечения ими перекрытий, стен и перегородок необходимо заключать в гильзы для свободного перемещения труб при температурных изменениях. При температуре теплоносителя выше 105° С трубопроводы, проходящие через сгораемые или трудносгораемые конструкции, заключают в гильзы из несгораемого материала. Зазор между гильзой и трубой должен быть не менее 15 мм при заполнении его асбестом и не менее 100 мм без заполнения. Гильзы должны выступать на 20-30 мм выше отметки чистого пола. Края гильз необходимо располагать заподлицо с поверхностями стен, перегородок и потолков. На стояках однотрубных систем отопления со смещенными замыкающими участками гильзы в перекрытиях не ставят. При этом расстояние от стояка до нагревательного прибора в проточных (без замыкающих участков) системах отопления или до смещенного замыкающего участка должно быть не менее 180 мм. Места проходов трубопроводов через брандмауэры следует уплотнять несгораемым материалом (асбестом). Трубопроводы холодной воды в местах прохода через деревянные строительные кон¬струкции необходимо обертывать рубероидом. Санитарные и нагревательные приборы устанавливают по отвесу и уровню. Однотипные санитарные и нагревательные приборы и арматура, расположенные в пределах одного помещения, должны быть установлены единообразно и на одной высоте. При размещении баков для горячей воды на деревянных конструкциях в местах соприкосновения металла с деревом следует устанавливать прокладки из асбестового картона толщиной 5 мм. Санитарно-технические кабины устанавливают на выведенное по уровню основание. Перед установкой кабин проверяют, чтобы верх канализационного стояка нижележащей кабины и подготовленного основания находились в одной плоскости. Оси канализационных стояков смежных этажей должны совпадать. Вентиляционные каналы кабин необходимо присоединять до укладки плит перекрытия данного этажа. Наружный осмотр, а также гидравлическое испытание трубопроводов при скрытой прокладке производят до их закрытия, а изолируемых трубопроводов — до нанесения изоляции. Системы отопления и системы водоснабжения перед вводом в эксплуатацию необходимо тщательно промыть водой. Внутренние системы водопровода и системы отопления в зимних условиях присоединяют к наружным сетям непосредственно перед пуском систем.
Трубопровод не всегда прокладывают под землей. Порой, особенно если речь идет о крупных магистралях, этот вариант оказывается невыгодным. А чтобы удерживать трубопровод в заданном проектном положении или даже переместить систему при необходимости, применяются специальные опоры, расположенные на точно рассчитанном расстоянии друг от друга.