общий индекс затрат труда
q1 – количество продукции в отчетном периоде.
Индекс трудоемкости – характеризует изменение трудоемкости единицы продукции в отчетном периоде по сравнению с базисным.
Агрегатный индекс трудоемкости определяется по формуле:
,
где – фактические затраты времени на производство всей продукции в отчетном периоде (фактическая трудоемкость;
– показывает, сколько времени пришлось бы затратить на производство всей продукции отчетного периода в базисном периоде.
Индекс производительности труда
Формула индивидуального индекса производительности труда:
,
,
Индекс стоимости товарооборота – характеризует общее изменение стоимости товарооборота (выручку).
.
Индексы выполнения плана. Особенность таких индексов заключается в том, что при их вычислении фактические данные сопоставляются не с базисными, а с плановыми. Причем, весами индекса могут быть как плановые показатели, так и фактические.
ИНДЕКСНЫЕ РЯДЫ
Взаимосвязанные (сопряженные) агрегатные индексы
.
Среднеарифметический и среднегармонический индексы
Заменив в формуле агрегатного индекса q1 на , получим формулу среднеарифметического индекса физического объема:
,
где – индивидуальный индекс физического объема производства (реализации) продукции;
– стоимость продукции базисного периода в ценах базисного периода (реализовано в базисном периоде).
Заменив в формуле агрегатного индекса на
, получим формулу среднего гармонического индекса цен:
.
Индексы, выражающие соотношение сложных экономических явлений в пространстве – по городам, районам, областям, странам, отдельным предприятиям называются территориальными.
Если в качестве базы для сравнения принять данные второго города – Б, а весов – количество проданных товаров в первом городе – А, то территориальный индекс цен можно определить по формуле:
,
где и
– цены на одни и те же товары в городах А и Б, а
– количество проданных товаров в городе А.
В ряде случаев при определении территориальных индексов цен в качестве веса берут общую сумму продаж по сравниваемым объектам (общее количество товаров, проданных в сравниваемых объектах). Тогда
,
где и
– цены на одни и те же товары в объектах А и Б, а
– количество проданных товаров в городе А и Б.
При вычислении территориальных индексов физического объема товарооборота или произведенной продукции, количество продукции взвешивают на средние цены по всем объектам по формуле:
,
где и
– количество произведенных (проданных) товаров по объектам;
– средняя цена каждого товара по объектам.
Индексы переменного и фиксированного состава.
ИПС – относительная величина, характеризующая динамику двух средних показателей для однородной совокупности:
;
;
;
и т.д.
Степень влияния структурных сдвигов на изменение средних показателей определяется при помощи индекса структурных сдвигов. Он рассчитывается путем деления индекса переменного состава на индекс фиксированного состава.
.
ТЕМА 9. ВЫБОРОЧНОЕ НАБЛЮДЕНИЕ
8.1 Понятие о выборочном методе, его суть и преимущества
8.2 Виды и схемы отбора единиц в выборочную совокупность
8.3 Теоретические основы выборочного метода и ошибки выборки
8.4 Определение средних и предельных ошибок при различных видах отбора
8.5 Определение необходимой численности выборки
Выборочным называется наблюдение, которое дает характеристику всей совокупности на основе исследования некоторой ее части.
Существует ряд общих понятий и терминов, принятых в теории выборочного метода.
Исследуемая совокупность единиц называется генеральной совокупностью и обозначается через N. Соответственно и все характеристики генеральной совокупности тоже называются генеральными и обозначаются:
– генеральная средняя (средняя величина какого-либо признака в генеральной совокупности);
– генеральная доля (доля единиц, обладающих определенным признаком), доля отличников в общей совокупности студентов вуза и т.д.;
Чтобы распечатать файл, скачайте его (в формате Word).
Индексный анализ производительности труда и затрат труда в КГУП Шуваевское
Общий индекс затрат труда на производство продукции показывает во сколько раз изменились затраты труда на производство продукции в текущем периоде по сравнению с базисный.
Стоимостной индекс отражает не только влияние изменений производительности труда, но и влияние соответствующих структурных изменений производства. Например, повышение удельного веса менее трудоемких видов продукции ведет к увеличению индекса при отсутствии каких-либо изменений производительности труда.
в отчетном периоде выработка продукции в стоимостном выражении за 1 чел.-час увеличилась в 1.02 раза.
Проведем факторный анализ изменения затрат труда: а) общее
в 2001 затраты труда на производство продукции уменьшились на 33170,2 чел.-ч.
Важными условиями роста экономической эффективности аграрного производства являются улучшение использования трудовых ресурсов сельского хозяйства, повышение производительности труда. Для этого необходимо пересмотреть кардинально аграрную политику. Крестьянство должно рассматриваться не как донор и источник ресурсов для города, а как экономически и социально равноправный партнер и союзник. Следует не допускать дискредитации крестьянства, поддерживать экономический паритет в отношениях деревни с городом, оказывать со стороны государства реальную помощь в развитии социальной сферы села.
Производительность труда в определенной мере зависит не только от фондовооруженности труда, но и от эффективного и интенсивного использования основных средств. Интенсивное использование тракторов, комбайнов, грузовых автомобилей и других машин за счет простоев по техническим и организационным причинам способствует увеличению выработки в расчете на единицу техники на 20-25%.
В работе проведен корреляционно-регрессионный анализ, в результате которого установлена сильная связь между результативным фактором (производительностью труда) и факторными показателями (фондовооруженности, оплаты труда и затратами труда) Кроме этого экспериментальным путем установлена значимость уравнения регрессии и его параметров.
Интересное по теме
Индивидуальные и сводный индексы производительности труда, индекс затрат труда на производство продукции
По данным таблицы определить:
Определим индивидуальные индексы производительности труда
Определим индекс динамики производительности труда
Определим индивидуальные индексы физического объема продукции
Составим расчетную таблицу
Cводный индекс производительности труда
t = 1:T — трудоёмкость
Индекс физического объема продукции равен
Сводный индекс затрат труда на производство продукции
Общий индекс производительности труда: формула
Общий индекс производительности труда формула
Похожие публикации
Производительность труда – это один из основных показателей, который используют для определения эффективности деятельности предприятия. Рассчитывая производительность труда по отношению к разным параметрам (количество выпущенной продукции, затраченное время, количество задействованных работников) можно вывести индекс, который будет отражать динамику работы в отчетном периоде, в сравнении с базисным.
Индекс производительности труда: формула
Статистика производит оценку производительности труда по двум критериям:
Объем (количество) произведенной продукции за определенное время
Время, потраченное на производство этого объема
Таким образом определяется количество произведенной продукции за одну временную единицу (час, день).
Если временной показатель заменить на количество работников, которые участвовали в производстве данной продукции, то получится выработка на человека.
Затраты времени на производство определенного количества изделий
То есть трудоемкость – это обратный показатель выработки, который показывает, какое время было затрачено на производство одного изделия.
Расчет индекса производительности труда
Для примера расчета отдельных индексов производительности труда возьмем следующие данные:
Объем выпущенной продукции, штук
Время, затраченное на изготовление, часов
Определим среднемесячную выработку по обоим наименованиям изделия в отчетном и базисном месяцах:
Продукция № 1:
120/160=0,75 (базисный месяц)
Сравнивая два этих показателя можно сказать, что в отчетном месяце эффективность труда была более высокой, поскольку за единицу времени (час) количество выпущенной продукции было больше.
Продукция № 2:
60/160=0,38 (базисный месяц)
50/170=0,29 (отчетный месяц).
По данной продукции производительность наоборот, уменьшилась.
Теперь посчитаем трудоемкость данных изделий, то есть количество времени, которое было затрачено на изготовление одной единицы.
Продукция № 1:
160/120=1,33 (базисный месяц);
170/150=1,13 (отчетный месяц)
На производство 1 единицы продукции в базисном месяце затрачивается 1,33 часа, что больше, чем 1,13 часа в отчетном месяце, соответственно можно сделать вывод, что трудозатраты в отчетном месяце уменьшились.
Продукция № 2:
160/60=2,67 (базисный месяц);
170/50=3,4 (отчетный месяц)
Сравнивая полученные показатели можно сделать вывод, что трудозатраты по продукции № 2 в отчетном периоде увеличились.
Дальше, на основании полученных показателей, рассчитывают общий индекс производительности труда по двум наименованиям продукции в отчетном месяце, которая выражается формулой:
(Общий объем продукции за отчетный месяц X время базисного месяца)
(Общий объем продукции за отчетный месяц X время отчетного месяца)
Рассчитываем общую производительность труда на основании имеющихся данных:
(150 х 160 + 50 х 160) / (150 х 170 + 50 х 170) = (24 000 + 8000) / (25 500 + 8500) = 32 000 / 34 000 = 0,94 или 94%
соответственно, общая производительность труда в отчетном месяце упала на 6%.
Индивидуальный индекс производительности труда: формула
Индивидуальные индексы труда – это величины, характеризующие отдельно взятый вид продукции (изделий) по производительности труда, трудозатратам и т.д. То есть, сюда относится трудоемкость и выработка, о которых шла речь выше, а также к индивидуальным индексам можно отнести:
Основной показатель эффективности производства и рационального использования фонда рабочего времени – это индекс производительности труда. Формула расчета данной величины предполагает соотношение показателей отчетного периода, по которому производят анализ, и базисного периода, с которым сравнивают эти показатели.
Полные тексты нормативных документов в актуальной редакции вы всегда сможете посмотреть в КонсультантПлюс.
14. Индексы в статистике: методы исчисления, примеры
«Индекс» в переводе с латинского – указатель, показатель.
В статистике под индексом понимается относительная величина, характеризующая соотношение значений определенного показателя во времени, пространстве, а также сравнение фактических данных с планом или другим нормативом.
С помощью индексов можно определить количественные изменения самых различных показателей функционирования народного хозяйства, развития социально-экономических процессов и т.п.
В экономической работе с помощью индексов можно объективно и точно показать изменения в росте или снижении производства, изменения в урожайности, состоянии себестоимости и цен выпускаемой продукции, численности работающих, производительности труда, заработной платы, изменения в цене акций на фондовых рынках (индекс Доу Джонса), сравнительную характеристику изменения погоды за определенный период времени (температуры, влажности, давления) и т.д. и т.п.
Индексы в своей основе представляют разновидность относительных величин, характеризующих средние показатели исследуемых процессов или явлений в социально-экономических и других областях деятельности общества. Однако от средних величин, рассмотрению которых посвящены были предыдущие темы, индексы отличаются тем, что они воплощают в себе, как правило, сводные, обобщающие показатели, т.е. выражают собой некоторое содержание, свойственное всем рассматриваемым явлениям и процессам.
Индексный метод имеет свою терминологию и символы.
Обозначения индексируемых величин:
i – индивидуальный индекс, его вычисляют для одной единицы совокупности;
I – общий (сводный) индекс (он определяется для всех единиц совокупности);
q – количество (объем) какого-либо товара в натуральном выражении;
p – цена единицы товара;
z – себестоимость единицы продукции;
t – затраты времени на производство единицы продукции, трудоемкость;
T – общие затраты времени на производство (tq) или численность рабочих;
pq – стоимость продукции или товарооборот;
zq – издержки производства.
Знак внизу справа означает период, например:
Экономический индекс – это относительная величина, которая характеризует изменение исследуемого явления во времени, в пространстве или по сравнению с некоторым эталоном (планируемым, нормативным уровнем и т.п.).
Если в качестве базы сравнения используется уровень за какой-либо предшествующий период – получают динамический индекс; если же базой является уровень того же явления по другой территории – территориальный индекс.
Индексируемая величина – показатель, изменение которого характеризуется индексом, она содержится в названии самого индекса, например: индекс цен, индекс заработной платы, индекс физического объема продукции и т.д.
Вес индекса – величина, служащая для целей соизмерения индексируемых величин.
Классификация индексов:
В экономическом анализе индексы используются не только для сопоставления уровней изучаемого явления, но главным образом для определения экономической значимости причин, объясняющих абсолютное различие сравниваемых уровней.
Экономические индексы позволяют: 1) измерить динамику социально-экономического явления за два и более периодов времени; 2) измерить динамику среднего экономического показателя; 3) измерить соотношение показателей по разным регионам; 4) определить степень влияния изменений значений одних показателей на динамику других; 5) пересчитать значения макроэкономических показателей из фактических цен в сопоставимые.
Методика построения агрегатного индекса предусматривает решение трех вопросов: 1) какая величина будет индексируемой; 2) по какому составу разнородных элементов явления необходимо исчислить индекс; 3) что будет служить весом при расчете индекса.
Правило при выборе индекса
При выборе веса индекса принято руководствоваться следующим правилом: если строится индекс количественного показателя, то веса берутся за базисный период, при построении индекса качественного показателя используются веса отчетного периода.
Расчет индивидуальных индексов
Простейшим показателем, используемым в индексном анализе, является индивидуальный индекс, который характеризует изменение во времени экономических величин, относящихся к одному объекту, например:
– индекс цены определенного продукта (товара), где и
цена товара, соответственно в текущем и в базисном периоде
‑ индекс объема одного определенного продукта (товара)
‑ индекс себестоимости единицы отдельного продукта
‑ индекс численности работников и т.д.
Все индивидуальные индексы показывают, каково соотношение между отчетным (со знаком «1») и базисным (со знаком «0») показателями или во сколько раз увеличилась (уменьшилась) индексируемая величина.
Все индивидуальные индексы по сути являются относительными величинами динамики или коэффициентами (темпами) роста (снижения).
Индивидуальные индексы характеризуют изменение отдельных единиц статистической совокупности. Характерной чертой индексов является то, что все они образуют системы взаимосвязанных показателей.
Расчеты индивидуальных индексов просты по своей сущности и выполняются путем вычисления отношения двух индексируемых величин. Индивидуальные индексы могут исчисляться в виде индексного ряда за несколько периодов.
Существуют два способа расчета индивидуальных индексов: цепной и базисный.
При цепном способе расчета за базу отношения принимается индексируемая величина соседнего прошлого периода, в этом случае база расчета в ряду постоянно меняется.
При базисном способе расчета за базу принимается индексируемая величина какого-либо отдельного периода.
Расчет общих индексов
В области экономических явлений наряду с индивидуальными индексами, характеризующими изменения единичных элементов, возникает необходимость расчета сводных относительных величин, обобщающих изменения определенного показателя в сложной совокупности, отдельные элементы которой несопоставимы (в физических единицах) и не могут суммироваться.
Например, нельзя тонны нефти и тонны стали, а также цены на разные товары (мясо, молоко, обувь, одежду и т.п.).
Для обобщения относительного изменения определенного показателя в сложной совокупности рассчитываются общие (сводные ) индексы.
Общий (сводный) индекс – показатель, измеряющий динамику сложного явления, составные части которого непосредственно несоизмеримы в физических единицах.
Например, по данным органов статистики, цены на продовольственные товары в декабре 2018 г. составили 116,1% по отношению к предыдущему месяцу (ноябрю) и 175 % по отношению к декабрю 2017 г.
С помощью общих индексов характеризуется изменение цен на товары, изменение уровня жизни, развитие производства отдельных отраслей и экономики в целом и многое другое.
Индексы могут иметь разный характер.
Одни являются объемными (количественными); другие условно можно назвать качественными: они представляют собой показатели, определяемые на какую-то единицу (цена единицы товара, себестоимость единицы продукции, урожайность с 1 га и т.д.).
В соответствии с этим и индексы можно подразделить на индексы количественных показателей (индекс физического объема производства, индекс продаж акций и т.п.) и качественных (индекс цен, индекс себестоимости, индекс заработной платы и пр.)
Каждый из этих индексов имеет свои особенности, но любой общий индекс может быть исчислен двумя способами: как агрегатный и как средний из индивидуальных.
Рассмотрим оба способа построения (исчисления) общих индексов.
Общий индекс, полученный путем сопоставления итоговых показателей, количественно выражающих сложное явление в отчетном и базисном периодах с помощью соизмерителей, называют агрегатным.
Соизмерители необходимы для перехода от натуральных измерителей, разнородных единиц статистической совокупности к однородным показателям.
При этом в числителе и знаменателе общего индекса изменяется только значение индексируемой величины, а их соизмерители являются постоянными величинами и фиксируются на одном уровне ‑ это необходимо для того, чтобы на величине индекса сказывалось лишь влияние фактора, который определяет изменения индексируемой величины.
Пример. В качестве соизмерителей индексируемых величин выступают тесно связанные с ними экономические показатели: цена, количество, себестоимость единицы продукции или затраты на единицу продукции и др.
При сравнении числителя и знаменателя данной формулы в разности определяется показатель абсолютного прироста.
При сравнении разности числителя и знаменателя индексного отношения получаем показатель, характеризующий прирост суммы в текущем периоде по сравнению с базисным периодом.
Обозначая объем продукции (товаров через q, а цены – через p, можно представить стоимость продукции в базисном периоде как , а в отчетном как
. Сопоставляя эти два показателя, получим индекс стоимости (товарооборота).
Который показывает относительное изменение стоимости продукции как за счет изменения цен, так и за счет изменения объема отдельных товаров.
Если же продукцию двух сравниваемых периодов оценить в одних и тех же неизменных ценах, то очевидно, что стоимость продукции двух периодов будет отличаться лишь за счет изменения объема продукции. Поэтому общий индекс, исчисленный как отношение стоимости продукции двух периодов в одних и тех же ценах, называют агрегатный индекс физического объема .
В агрегатном индексе физического объема в качестве соизмерителя различных товаров принимаются цены базисного периода или цены, неизменные в течении ряда лет
(такие цены называют также сопоставимыми).
где и
‑ объем продукции различных видов соответственно в базисном и отчетном периодах.
Отметим, что суммы в числителе и знаменателе имеют вполне реальный смысл:
‑ стоимость продукции базисного периода;
‑ стоимость продукции отчетного периода в базисных ценах.
Разность между числителем и знаменателем агрегатного индекса характеризует изменение в абсолютном выражении результативного показателя за счет изменения индексируемой величины.
Пример. Предположим, предприятие выпускает три вида неоднородной продукции. Данные о производстве и цены за два периода приведем в (табл. 14.1).
Таблица 14.1. – Данные о производстве продукции за 2 периода
Товар | Выработано тыс. единиц | Цена за единицу товара, руб. | Стоимость продукции в базисных ценах, тыс. руб. | |||
Базисный период q0 | Отчетный период q1 | Базисный период р0 | Отчетный период р1 | Базисный период q0p0 | Отчетный период q1p0 | |
А | 80 | 60 | 13 | 16 | 1040 | 780 |
Б | 50 | 30 | 18 | 20 | 900 | 540 |
В | 40 | 35 | 6 | 8 | 240 | 210 |
ИТОГО | – | – | – | – | 2180 | 1530 |
Следовательно, общий объем (выпуск) продукции в отчетном периоде по сравнению с базисным составил 70,2% (или снизился на 29,8%).
А в абсолютном выражении за счет уменьшения выпуска стоимость продукции в отчетном периоде снизилась на 650 тыс. руб., вычитаем из числителя знаменатель
Как уже отмечалось, при построении агрегатного индекса физического объема могут использоваться и другие соизмерители. Так, например, если принять в качестве соизмерителей себестоимость единицы продукции в базисном периоде z0, то агрегатный индекс физического объема можно записать как:
Разность между числителем и знаменателем покажет, как изменились общие затраты (издержки) на производство в связи с изменением выпуска продукции:ли в качестве соизмерителей принять затраты времени на единицу продукции в базисном периоде, то формула агрегатного индекса физического объема будет иметь вид:
разность будет характеризовать изменение общих затрат времени на производство продукции за счет изменения объема выпуска.
Агрегатный индекс цен. По аналогии с индексом физического объема для определенного набора товаров (продуктов) может быть построен и агрегатный индекс цен (индекс качественного показателя). При этом рассуждения остаются теми же: если нельзя суммировать цены на различные товары, то можно суммировать и сопоставлять стоимости этих товаров.
Однако, сопоставляя два значения стоимости рq, мы должны показать изменение последней лишь за счет изменения цен р, т.е. необходимо устранить влияние изменения количества производимой (или реализуемой) в разные периоды продукции q на стоимостный показатель продукции. Для этого один и тот же количественный набор продуктов надо оценить в ценах отчетного и базисного периодов и затем сопоставить первую величину со второй. Таким образом, в агрегатном индексе цен индексируемой величиной является, естественно, цена р, а соизмерителем (весами) ‑ количество произведенных (реализованных) товаров q, принятое на уровне базисного или отчётного периода.
Агрегатная формула общего индекса цен была впервые предложена в 1864 г. немецким ученым Э. Ласпейресом. Он предлагал строить агрегатный индекс цен, приняв в качестве весов продукцию базисного периода q0:
В 1874 г. другой немецкий учёный, Г. Пааше, предложил строить агрегатный индекс цен по продукции текущего периода q1:
Каждый из этих индексов имеет свои особенности, которым отдается предпочтение в конкретных условиях, использования.
Так, например, индекс Цен Ласпейреса удобен для оперативной (недельной, месячной, квартальной) информации об изменении цен на определенный фиксированный набор товаров, когда пересчет каждый раз на текущий набор (количество) товаров сопряжен с большими затратами, труда и времени.
По формуле Ласпейреса рассчитывают индекс потребительских цен (ИПЦ).
В то же время формуле Пааше отдается предпочтение, когда индекс цен рассматривается в системе с индексом стоимости и индексом физического объема. В этом случае, чтобы обеспечивать взаимосвязь между индексом стоимости и индексом физического объема.
Кроме того, при расчете индекса цен; по формуле Пааше, вычитая из числителя знаменатель, легко определить в абсолютном выражении сумму потерь (или прибыли) за счет изменения цен на продукцию отчетного (текущего) периода.
Рассмотрим расчет агрегатных индексов цен на примере.
Таблица 14.2. – Данные о реализации продукции за 2 периода (цифры условные)
изм
Чтобы определить, как в среднем изменились цены на все продукты (или какова средняя величина изменения цен), рассчитаем сводный (общий) индекс цен в форме агрегатного индекса:
Расхождение не очень большое (на 0,4), но все же есть. Какому же индексу отдать предпочтение? На таком уровне исследования (по отдельному хозяйству и совокупности хозяйств) предпочтение следует отдать индексу Пааше, поскольку он показывает реальное изменение стоимости продукции, реализованной в отчетном периоде, за счет изменения цен. В этом индексе числитель ‑ реальная величина, фактическая выручка, полученная от реализации продукции в отчетном периоде, а знаменатель ‑ условная величина, показывающая, какой была бы выручка, если бы продукция отчетною периода продавалась по базисным ценам.
Разность между ними, (56200 ‑ 48500 = 7700 руб.), показывает в данном случае, какую прибыль дополнительно получило хозяйство при реализации продукции в отчетном периоде за счет роста цен.
В формуле же индекса цен Ласпейреса в знаменателе содержится реальная выручка (стоимость) от реализации в базисном периоде, а в числителе ‑ условная величина, характеризующая, какой была бы выручка от реализации продукции базисного периода по ценам отчетного периода. Разность практически не представляет интереса, так как эта величина слишком отвлеченная: она показывает, насколько изменилась бы выручка (стоимость) в прошлом (базисном) периоде, если бы базисная продукция была реализована по текущим (отчетным) ценам.
Кроме того, при расчете индекса цен по формуле Пааше, легко увязываются изменения трех взаимосвязанных показателей: стоимости (выручки), объема реализации и цен. Так, по данным табл. 14.2 индекс стоимости продукции
(или 122,2%), т.е. стоимость продукции (выручка от продажи) в отчетном периоде увеличилась на 22,2%, что составило в абсолютном выражении 10200 руб. (56200 – 46000).
Индекс физического объема реализаций по данным табл. 14.2
В абсолютном выражении увеличение стоимости за счет изменения объема реализации составило 2500 руб. (48500 – 46000)
Таким образом, имеет место увязка индексов (относительного изменения показателей):
А также абсолютных изменений: в нашем примере 10200 = 7700 + 2500,т.е. общее изменение стоимости продукции равно сумме приростов за счет изменения цен и за счет изменения объема.
В начале XX в. американский экономист И. Фишер предложил вместо формул индексов цен Ласпейреса и Пааше использовать среднюю геометрическую из них, т.е. корень квадратный из произведения индексов иен Ласпейреса и Пааше:
(Этот индекс назван им идеальным, поскольку в нем не отдается предпочтение ни продукция базисного периода, ни продукции текущего периода.
Кроме того, этот индекс «обратим» во времени, т.е. если рассчитывать индекс базисного периода к отчетному, он будет равен обратной величине первоначального индекса (т.е. отчетного периода к базисному). Другими словами, перемножение таких, «обратных» индексов дает единицу.
Однако индекс Фишера из-за его формальности и трудности экономической интерпретации используется редко, в основном при территориальных сопоставлениях.
Мы рассмотрели расчет агрегатных индексов физического объема и цен как наиболее типичных представителей агрегатных индексов соответственно для количественных и качественных индексируемых показателей.
По аналогии можно записать агрегатные индексы для многих других показателей.
Контрольные задания