нижнее расположение блока питания
Системный блок: БП вверху или внизу?
Вступление
Идет время, компьютерные системы становятся мощнее, и только корпус системного блока практически не изменился – всё та же невзрачная металлическая коробка. Так ли все скучно в этой отрасли? Я не о смене цветовой гаммы или установке дополнительной иллюминации. Изменения есть, речь далее пойдет об одном технологическом новшестве. Спецификация ATX подразумевает установку блока питания рядом с той стороной печатной платы, где размещается процессор (и его радиатор). Но является ли это лучшим решением?
Качество работы компьютера зависит от надежности блока питания. А основная причина ухудшения его характеристик кроется в деградации свойств электролитических конденсаторов. Они и так работают на пределе мощности, да еще их подогревает горячий воздух из системного блока. Как известно из школьного курса химии, скорость химической реакции удваивается на каждые десять градусов. Для электролитических конденсаторов указывается температура в 105 градусов, но не задумывались, сколько времени они проработают при такой (или подобной) температуре? Цифра вас вовсе не обрадует.
реклама
Блок питания вверху или внизу?
Спецификация ATX по этому поводу говорит примерно следующее:
При вертикальном исполнении системного корпуса данная концепция означает установку блока питания (‘PSU with fan’ на картинке) над платой. Такая компоновка раньше была обычным явлением и только в последнее время появились альтернативные конструкции. Довольно близко к стандартному исполнению выполнен довольно известный системный корпус Ascot 6AR2:
В качестве ‘нестандартного’ решения можно предложить так же набирающий популярность корпус Cooler Master CM690 :
Для проведения тестирования можно было бы взять два этих (или подобных им) системных блока и провести исследование … но при этом потеряется весь смысл – меняя корпус, нельзя учесть всех мелочей, влияющих на протекание воздушных потоков. Поэтому ни CM690, ни чего-либо аналогичного вы не увидите. Для обоих вариантов компоновки будет использован один и тот же корпус Ascot 6AR2, но с некоторыми доработками.
Подбор компонентов
Топологии исполнения системных блоков с размещением блока питания вверху и внизу очень похожи – основной блок элементов просто смещается вниз или вверх. Если взять разные корпуса, то с корректностью тестирования можно сразу проститься, поэтому в экспериментах будет участвовать один и тот же системный блок, а тип исполнения будет меняться перемещением системной платы и ее сопутствующих элементов крепления.
реклама
Вторая проблема – при проведении тестирования не ожидается значительного изменения температур, для повышения точности будет использовано пять датчиков с фиксацией их на местах измерений.
Чтобы оценить эффективность разных топологий, в корпусе надо собрать типичную конфигурацию системного блока. Но вряд ли хорошей идеей будет установка дорогостоящих компонентов в ‘пиленный’ корпус. Что же, значит эмуляция, так даже лучше. ‘Компьютер из резисторов’ набирать совсем уж скучно, поэтому использовалась системная плата на наборе микросхем nForce4 с совсем уж смешным процессором Athlon 64 3000+ (Venice) и видеокартой S3 Virge/DX. Подобная комплектация потребляет совсем чуть, поэтому остальное добиралось с помощью одного канала блока нагрузок. Такой вариант хорош тем, что можно весьма произвольно эмулировать тепловыделение компонентов в системном блоке.
Тестовый стенд
Методика тестирования
Однако не стоит переоценивать эффект от выноса тепла наружу в эталонных системах охлаждения – в видеокартах довольно много тепла рассеивается обратной стороной печатной платы. Что ж, даже у ‘типичной’ конфигурации получается довольно большой спектр номенклатуры, но вряд ли разумно проводить тестирование на всём её разнообразии – изменится лишь масштаб цифр, но не скажется на эффективности размещения блока питания внизу или вверху.
Мощность потребления современных процессоров порядка 50-150 Вт, видеокарт 150-230 Вт. При этом следует учесть, что самые производительные видеокарты (с большей мощностью потребления), как правило, удаляют значительную часть тепла за пределы корпуса, а нас интересует только тот нагрев, который происходит внутри системного блока. При некотором упрощении, положим тепловыделение процессора в 100 Вт и 150 Вт для видеокарты.
Пробный запуск тестового стенда показал, что Athlon 64 3000+ (Venice) на 1.76 В и 2.5 ГГц рассеивает около 50 Вт в тесте S&M. Это явно не дотягивает до требуемых 100 Вт, но большего от этого процессора не получить, и так было выставлено максимально возможное напряжение. Что же, нехватку в 50 Вт можно компенсировать за счет повышение тепловыделения дополнительного нагревательного элемента, что означает необходимость получения потребления на нем 200 Вт (150 Вт от видеокарты и дополнительные 50 Вт от процессора).
Это не совсем то, чего хотелось, но подобная перенастройка не скажется на результатах тестирования, ведь интерес представляет верх системного блока, именно там соберется тепло и от процессора, и от других элементов.
Давайте соберем все цифры в одном месте:
Методика исследования состоит в сравнении двух вариантов размещения блока питания при минимальном внесении изменений в другие элементы. Но это не означает, что будут сравниваться только два варианта. Наверно, стоит рассмотреть влияние скорости вращения вентиляторов и небольшое изменение воздушных потоков. Это означает, что будут рассматриваться три модификации на двух исполнениях корпуса.
1. | Скорость вращения корпусных вентиляторов 1500 об/мин. |
2. | Скорость вращения снижена до 1000 об/мин. |
3. | То же, что и ‘2’, но с удалением заглушек неиспользуемых плат расширения. |
Вариант ‘3’ интересен тем, что создает дополнительный приток ненагретого воздуха в системный блок. Подобный прием прост в реализации и довольно эффективен в снижении общей температуры в системном блоке. Для данного теста этот случай может оказаться чувствителен к месту размещения блока питания, ведь (при его расположении внизу) теплый воздух из него может проникать обратно в системный корпус через открытые отверстия плат расширения.
Системный блок: БП вверху или внизу? (страница 2)
Датчики 1-5 измеряют разность между температурой измеряемых точек и воздуха вне системного блока. Датчик номер 6 показывает температуру печатной платы, он находится где-то в недрах материнской платы, предположительно около верхнего разъема PCI, и его показания особого смысла не несут.
Датчик | Скорость вентиляторов, об/мин | БП вверху, градусы | БП внизу, градусы | Разность, градусы |
nForce4 | 1500 | 35.1 | 31.8 | 3.3 |
1000 | 38 | 37.8 | 0.2 | |
1000 ** | 37.9 | 36.9 | 1 | |
Системная память | 1500 | 22.4 | 24.2 | -1.8 |
1000 | 25.2 | 30.5 | -5.3 | |
1000 ** | 26.6 | 30.2 | -3.6 | |
Радиатор процессора | 1500 | 22.3 | 25 | -2.7 |
1000 | 27.9 | 31 | -3.1 | |
1000 ** | 27.4 | 29.2 | -1.8 | |
Решетка БП | 1500 | 13.2 | 12.8 | 0.4 |
1000 | 15.5 | 14.4 | 1.1 | |
1000 ** | 16 | 14.5 | 1.5 | |
Вытяжной вентилятор | 1500 | 11.1 | 13.5 | -2.4 |
1000 | 14.8 | 19.7 | -4.9 | |
1000 ** | 14.9 | 19 | -4.1 | |
Материнская плата * | 1500 | 54 * | 53 * | 1 |
1000 | 57 * | 57 * | 0 | |
1000 ** | 51 * | 56 * | -5 |
* Все датчики, кроме этой позиции, показывают перегрев к температуре окружающего воздуха вне системного блока.
** Дополнительно сняты заглушки свободных плат расширения.
реклама
Нижнее расположение блока питания, меняется ориентация его входного отверстия вверх или вниз, и дополнительная перфорация внизу корпуса. Корпусные вентиляторы работали со скоростью вращения 1000 об/мин.
Ориентация входного отверстия БП | Дополнительная перфорация низа корпуса | Воздух из БП, градусов | Воздух из корпуса, градусов |
Отверстием вверх, воздух из корпуса | нет | 13.5 | 18.9 |
есть | 10.1 | 16.8 | |
Отверстием вниз, воздух снаружи | нет | 4.3 | 20 |
есть | 3.6 | 17.7 | |
нет * | 8 * | 19.5 * |
* Закрыт приток воздуха к вентилятору БП (довольно глупый режим).
Анализ результатов
Если просто бросить взгляд на последний столбец таблицы первого теста, то невольно приходит мысль о неэффективности размещения блока питания внизу – ‘в среднем’ температура стала больше, а сам блок питания как был горячим, так и остался. Но это беглый взгляд, давайте копнем глубже, и смысл в этом определенно присутствует.
Он установлен на материнской плате и находится левее PCI разъемов, а потому отражает температуру в этой зоне. Пока заглушки установлены, его показания мало зависят от варианта установки блока питания. Если же их снять, то это обеспечит приток прохладного воздуха и температура снизится… но только для случая с блоком питания вверху. При его нижнем расположении, через открытые щели плат расширения в корпус будет проникать вовсе не прохладный воздух, что сразу отразилось на результате – 56 градусов вместо 51.
Впрочем, если сравнить изменение показаний этого датчика со всеми остальными, то станет понятна бесполезность использования программного мониторинга для получения адекватных результатов замеров. Ну, сами посудите – при удалении заглушек этот датчик показал уменьшение температуры на 6 градусов, а другие датчики зафиксировали изменения только на 0.5-1 градус.
Датчики 1-5 показывают разность температур с окружающей средой, отсюда такие ‘маленькие’ цифры. Если хотите абсолютных величин, то прибавьте ту температуру воздуха, что и у вас в комнате. Положим, это 27 градусов. Значит, показания датчика ‘16 градусов’ следует понимать как 16+27=43 градуса, а это уже воспринимается как ‘довольно тепло’.
реклама
Датчик номер 1, набор микросхем nForce4.
Его особенность в том, что прямо под ним находится эмулятор видеокарты, нагревательный элемент. Когда блок питания внизу, то он хоть и немного, но отбирает тепло от ‘видеокарты’ и несколько улучшает перемешивание воздушной массы в этой зоне. Довольно странно, что наибольший эффект получается при большей скорости вращения корпусных вентиляторов.
Датчик номер 2, системная память.
Для случая размещения блока питания внизу, это место показывало явное ухудшение охлаждения. Причин несколько.
Во-первых, при размещении блока питания внизу, сама системная плата ’поднимается’ к верху корпуса. Это еще ничего, но нагретый воздух собирается вверху, при отсутствии активного перемешивания верхняя часть системной платы оказывается более теплой. Полученные измерения подтверждают эту предпосылку – при увеличении скорости вращения корпусных вентиляторов температура системной памяти снижается.
Во-вторых, когда блок питания установлен вверху, то он немного захватывает зону системной памяти. Точнее не так, его вентилятор ближе к памяти, а потому он немного забирает нагретый воздух из тепловой зоны над памятью, что немного снижает ее температуру. Системная память выделяет мало тепла, но она совсем не обдувается, поэтому и такая чувствительность даже к малейшему обдуву (отбору теплого воздуха).
Датчик номер 3, радиатор процессора.
Тут все просто и никаких разночтений. Когда блок питания вверху, то он работает в паре с корпусным вентилятором, что обеспечивает лучшее охлаждение. При переносе блока питания вниз сразу получается ухудшение на 2-3 градуса. В качестве оправдания напомню, что в корпуса с расположением блока питания вниз, довольно часто предусмотрено место или уже установлены два корпусных вентилятора на выдув. Один на обычное место и еще один (дополнительный) туда, где в стандартном варианте находился бы блок питания.
Датчик номер 5 (четвертый пока пропустим), вытяжной корпусной вентилятор.
Чем меньше его обороты, тем выше температура выходного потока. Когда блок питания вверху, то он помогает корпусному вентилятору, особенно на низкой скорости вращения последнего.
Датчик номер 4, температура воздушного потока из блока питания.
Ну вот, дошли до самого интересного. Блок питания ставят вниз только из того соображения, чтобы не нагревать его теплом от видеокарты и процессора. Провели тест и оказалось, что от места расположения температура блока питания не меняется? Ну, сами посудите – из таблицы видно, что разница между обоими вариантами установки составляет 1-2 градуса. Смысла нет! … Не совсем. В цифрах ошибки нет, все дело в отсутствии еще одной характеристики. Увы, но пока я не могу измерить скорость вращения вентилятора в блоке питания. Надеюсь, пробел будет устранен, но пока придется поверить мне “на слово”.
Когда блок питания был установлен в штатном варианте, сверху, то сила потока воздуха из него примерно равнялась потоку из корпусного вентилятора на 1500 об/мин. При установке вниз из блока питания выходило едва ощутимое дуновение. Даже больше, в первые несколько минут вентилятор на нем почти не вращался. По мере разогрева системного блока поток из БП стал более ощутим, но все равно он был несоизмеримо меньше варианта установки сверху.
Этой ‘глупости’ есть вполне обычное объяснение. Дело в том, что современные блоки питания регулируют скорость вращения своего вентилятора в зависимости от температуры в контрольной точке, которая, обычно, располагается на радиаторе выпрямительных диодов. Суть идеи в том, что чем больше нагрузка на блок питания, тем больше нагреваются выпрямительные диоды и тем энергичнее крутится вентилятор.
Но если нагрузка не очень большая (300 Вт для блока питания ‘550 Вт’ – это немного), то радиатор выпрямительных диодов нагревается недостаточно сильно и вентилятор вращается медленно. Вообще-то, есть два типа регуляторов – одни останавливают вентилятор при температуре ниже пороговой, как тестовый блок питания ( FSP550-80GLN ), а есть и такие, которые просто снижают скорость вращения до минимума, но продолжают крутиться. Последний вариант больше подходит для размещения вниз.
реклама
Ну хорошо, вентилятор в блоке питания вращается слабо, но почему же воздух из него нагрет столь сильно? Над блоком питания стоит эмулятор видеокарты, который нагревает воздух. По идее, этот воздух должен подниматься вверх и удаляться из корпуса верхним корпусным вентилятором, к тому же есть экран из видеоплаты PCI. Да, все так, но относительно высокая скорость прокачки воздуха через системный блок не позволяет нагретому воздуху спокойно подниматься вверх. Происходит перемешивание и вся область вокруг ‘видеокарты’ получает примерно равную температуру, в том числе и под ‘ней’. Далее воздух с повышенной температурой попадает в блок питания и выходит наружу. Вот так и получается – хоть блок питания поставили вниз, но температура воздуха из него осталась высокой.
Второй тест позволяет оценить чувствительность системы охлаждения к источнику охлаждающего воздуха блока питания и влияние дополнительного притока воздуха с низа корпуса, от перфорации в дне.
Когда блок питания для охлаждения берет воздух из корпуса, то его температура существенно больше, чем при использовании внешнего притока. На производительности общего охлаждения это сказывается, но как-то вяло. Здесь эффективнее оказывается простая перфорация в дне корпуса.
Последний вариант установки питания, во втором тесте, при своей глупости принес некоторую полезную информацию. В этом случае БП был установлен окном вентилятора вниз, но дно в корпусе системного блока осталось закрытым. Между блоком питания и дном остался небольшой промежуток, вот через эту щель и забирался воздух для охлаждения. Фактически, получился вариант установки типа ‘1’ с притоком воздуха из корпуса, но место забора ниже и теплая зона от ‘видеокарты’ (нагревательного элемента) дополнительно экранировалась корпусом самого блока питания.
В результате получилось что-то среднее между обоими вариантами ориентации блока питания, 8 градусов. Напомню, ‘нормальная’ установка окном вентилятора вверх или вниз давали 13.5 и 4.3 градуса соответственно. Довольно трудно придумать практическое применение такого решения. Разве что, при большой запыленности в помещении и обязательном применении фильтра на втяжном корпусном вентиляторе.
реклама
Заключение
С точки зрения системы охлаждения все ясно – размещение блока питания снизу позволяет ‘сделать’ его холоднее и тише. Что до общего охлаждения, то при такой компоновке на корпусные вентиляторы возлагается полная нагрузка по удалению нагретого воздуха. Когда блок питания находился вверху, то он работал в паре с верхним корпусным вытяжным вентилятором и брал часть нагрузки на себя. Поставили блок питания вниз – придется усилить выдув. Обычно в системных блоках с нижним расположением БП предусматривают установку двух вытяжных вениляторов в верхней части корпуса. Что касается перфорации в дне, то у такого решения не обнаружено недостатков. Поэтому, если в корпусе всё дно из дырок, это только на пользу.
Есть еще один момент, который может склонить чашу весов к переносу блока питания вниз. Современные процессорные кулеры не просто большие, а очень большие. Понятно, что в маленьком объеме мощность четырех- или шестиядерного процессоров не рассеять, поэтому надо рассчитывать на наихудший вариант. Например, в моем личном компьютере на Core 2 Quad получилась такая компоновка:
Обратите внимание, радиатор находится рядом с заборным окном блока питания. Ну и как это будет работать, если потоки в радиаторе движутся а-бы-как? Замечено, что вентилятор начинает издавать повышенный шум, если препятствие находится прямо перед ним. Попробуйте как-нибудь взять его и поднести ладонь перед ним и за ним (по направлению потока воздуха). Если поднести руку ‘после’, то уровень шума практически не меняется, а ‘перед’? Увы. Это означает, что в моей компоновке я получил больший уровень шума ‘просто так’. А что делать, если варианты отсутствуют.
реклама
И еще один момент. Не столь существенный, но тоже интересный. Обратите внимание на связки проводов из блока питания для первого и второго вариантов. Если блок питания вверху, то кабели питания идут там же, образуя кучу. При размещении блока питания внизу, эти кабели захламляют дно и не бросаются в глаза. Понятно, что их можно красиво обвязать или убрать в поддон, но это надо еще сделать, да и оперативность смены аппаратуры теряется.
Как правильно установить блок питания
Содержание
Содержание
За последнее десятилетие на рынке появилось много разнообразных блоков питания с активной, полупассивной и пассивной системами охлаждения. Давайте разберемся, как лучше установить блок питания в зависимости от его системы охлаждения и чем грозит его неправильная установка.
Установка блока питания в недавнем прошлом
Раньше у пользователей не было особого выбора при установке блока питания в корпус. Ведь в 90-е и нулевые годы на рынке царили стандарты форм-фактора AT и ATX, при которых блок питания, как правило, устанавливался в верхней части корпуса. БП еще и принимал активное участие в охлаждении компьютерных комплектующих, прокачивая нагретый воздух из около процессорного пространства сквозь себя.
Пока тепловыделение процессоров и видеокарт составляло 30–50 ватт, никаких проблем не возникало. Однако температурный режим в корпусе и в блоке питанияс рос вместе с тепловыделением компонентов системы. Поэтому компания Intel в 2004 году предложила стандарт BTX, призванный улучшить качество охлаждения в системном блоке, но массовым он так и не стал.
Однако стали меняться корпуса и сами блоки питания. Все чаще стали использоваться вентиляторы диаметром 120–140 мм, став практически стандартом в охлаждении БП. Постепенно и место посадки блока питания переехало в самое холодное место корпуса — вниз.
Популярный корпус Cooler Master 690 II Advanced, 2010 год.
Блоки питания наращивали мощность с каждым годом. Если в начале 2000-х годов реальная мощность массовых блоков питания составляла 150–200 ватт, то к началу 2010-х мощность повысилась до реальных 300–450 ватт, которые маркировались как 450–600 ваттные модели. Появлялись и блоки питания с пассивной системой охлаждения. Для стандартых ATX-корпусов производители обычно выносили систему охлаждения за его пределы, например как у Thermaltake Silent Purepower Fanless Heatpipe Cooling.
Корпуса с нижним расположением блока питания позволили более эффективно охлаждать сам БП. Поэтому модели с полупассивной и пассивной системами охлаждения обрели популярность.
Теперь перед пользователем, собирающим компьютер, возникают вопросы — как ставить блок питания? Вентилятором вверх или вниз? А если он совсем без вентилятора — с пассивной системой охлаждения? Давайте разберемся.
Чем опасен нагрев блока питания
Для начала стоит понять, чем опасен нагрев блока питания. Если открыть типичный БП, мы увидим целую россыпь конденсаторов. От них напрямую зависит стабильность и качество питания компьютера. Рассчитаны конденсаторы на довольно высокие температуры, в районе 85–105 градусов.
Однако со временем, под воздействием высоких температур и с ухудшающимся из-за запыленности охлаждением конденсаторы деградируют. Иногда просто «высыхают» — теряют электролит, иногда вздуваются и даже лопаются, а электролит вытекает. Деградация конденсаторов в цепи дежурного питания может вызвать проблемы с включением, а потом и подачу тока с напряжением выше 5 вольт, что гарантированно испортит материнскую плату.
Деградация фильтрующих конденсаторов в цепи питания 12 вольт вообще вызовет резкий рост пульсаций напряжения. Это выведет из строя другие конденсаторы: в цепях питания видеокарты и материнской платы.
Производители зачастую экономят на качестве конденсаторов, особенно в недорогих моделях, поэтому к вопросу охлаждения блока питания стоит подходить крайне серьезно. Ведь от него, по сути, зависит жизнь гораздо более дорогих комплектующих.
Не стоит забывать и о том, что чем выше температура поступающего в блок питания воздуха и выше его нагрев, тем ниже его эффективность. При тестировании блока питания на соответствие стандарту 80 PLUS используется температура входящего в него воздуха в 23 градуса.
Однако независимые эксперты, например, из Hardwaresecrets, тестирующие блоки питания при повышенных температурах воздуха в 45–50 градусов, приходят к выводу, что в таких жестких условиях многие блоки питания по экономичности не дотягивают до сертификата 80 PLUS.
Как ставить БП с постоянно работающим вентилятором
Если у вас корпус старого форм-фактора, где блок питания расположен сверху, то выбора у вас нет. Блок питания будет принимать активное участие в охлаждении компьютера, вытягивая нагретый воздух.
Для офисных компьютеров с маломощными компонентами это не критично. Но если у вас мощный игровой ПК, то желательно сменить корпус на такой, где блок питания будет внизу или, по крайней мере, улучшить охлаждение в корпусе, поставив высокооборотный вентилятор на выдув.
Если у вас корпус с нижним расположением блока питания и есть выбор, как его установить — возникает дилемма. Когда вы ставите блок питания вентилятором вверх, немного улучшается охлаждение в корпусе компьютера, а при наличии пылевых фильтров в корпусе уменьшается запыление блока питания. Но при этом увеличивается температура БП, особенно, если есть «горячая» видеокарта. Увеличится и его шум, если блок оснащен контролем температуры. А стандартная ситуация — падение болтика, крепящего видеокарту, вниз, превращается в большую проблему.
Большинство экспертов и опытных пользователей сходится во мнении, что обычный блок питания лучше поставить вентилятором вниз.
Как ставить БП с пассивной системой охлаждения
Это уже более сложный вопрос, но зачастую производитель указывает на самом блоке питания вариант установки. Обычно он ставится радиатором кверху, давая возможность нагретому воздуху беспрепятственно подниматься.
Например, у Seasonic SS-460FL (X-460 Fanless) даже есть наклейка, строго предупреждающая только об одном способе установки. Поэтому, приобретая блок питания с пассивной системой охлаждения, заранее скачайте его техническое описание и сверьтесь, подойдет ли ваш корпус для него.
Как ставить БП с полупассивной системой охлаждения
А вот это самый сложный вопрос, не имеющий однозначного решения. Дело в том, что у каждой модели такого блока питания есть свой алгоритм включения и выключения вентилятора в зависимости от нагрузки и/или температуры. Нужно учесть, какая нагрузка и как долго будет подаваться на блок питания. Если он большую часть времени будет слабо нагружен и вентилятор не будет вращаться, то лучше ставить его вентилятором кверху для свободной конвекции нагретого воздуха.
Представим ситуацию: довольно мощный блок питания с полупассивной системой охлаждения и мощностью 850 ватт — Corsair RM850i — используется в двух компьютерах с разными сценариями работы.
Один — для работы с тяжелой нагрузкой, типа видеокодирования или вычислений на многоядерном процессоре и мощной видеокарте, а иногда для веб-серфинга и простых игр. Второй — в основном для вэб-серфинга и просмотра фильмов и не больше пары часов в день для игр с серьезной нагрузкой.
По данным производителя, Corsair RM850i должен охлаждаться пассивно, еслииспользует до 40 % мощности (350 ватт) при температуре 25 градусов.
Но в обзорах пишут, что старт вентилятора происходит при большей нагрузке.
Очевидно, что первый вариант использования ПК потребует почти постоянно активного охлаждения и Corsair RM850i лучше поставить вентилятором вниз. А при втором сценарии использования, большую часть времени он будет работать в пассивном режиме и его лучше установить вентилятором вверх.
Если же вы сомневаетесь в том, какие типы нагрузки будут постоянны для вашего блока питания и смогут ли они задействовать активный режим, то стоит поставить его вентилятором вверх. Этот режим более универсален и безопасен в случае с полупассивной системой охлаждения.
Нюансы установки БП в корпусах с кожухами над ним
Все чаще встречаются корпуса с декоративными кожухами над блоком питания, например Deepcool MATREXX 55.
Очевидно, что в случае установки блока питания с пассивной/полупассивной системой охлаждения вентилятором к верху, конвекция горячего воздуха будет крайне затруднена — случится перегрев БП. Даже если на кожухе есть перфорация, она все равно будет препятствием, ухудшающим охлаждение. Если у вас такой корпус, снимите кожух или установите БП вентилятором вниз.
Установка в корпусах уникального или редкого дизайна
На рынке присутствует множество корпусов редкого дизайна, например, кубические, тонкие slim-корпуса, модели, где блок питания стоит спереди или боком и т.д. По таким корпусам можно дать совет — более тщательно выбирать блок питания. Учитывайте как будут вести себя потоки воздуха при вентиляции такого корпуса.
Корпус Lian Li PC-Q37WX
Блоки питания со сверхнизкими оборотами системы охлаждения
Избавить вас от многих проблем сможет блок питания, вентилятор которого вращается при малой нагрузке и малой температуре с очень низкими оборотами, в районе 500 об/мин.
В плане шума такой блок питания практически не уступает моделям с пассивной и полупассивной системой охлаждения, но лишен проблем перегрева.
Например, be quiet! Dark Power Pro 11 500W, вентилятор у которого при малых нагрузках вращается от 500 об/мин и доходит при полной нагрузке всего лишь до 1000 оборотов.
Как видите, установка блока питания в корпус — это довольно непростой вопрос, иногда на который невозможно ответить однозначно. Лучше всего заранее прочитать обзоры на интересующий вас корпус и блок питания, а также спросить у владельцев этих моделей совета на форумах.