какие выражения называются рациональными
Алгебра. 8 класс
Целые выражения – это такие выражения, которые состоят из чисел и переменных с помощью действий сложения, вычитания, умножения и деления на число, отличное от нуля.
Дробные выражения – это выражения, которые помимо действий сложения, вычитания, умножения и деления на число, отличное от нуля, содержат деление на выражение с переменными.
Целые и дробные выражения вместе называют рациональными выражениями.
Дробь – это выражение вида .
Целое выражение имеет смысл при любых значениях входящих в него переменных, потому что действия для нахождения значения целого выражения, всегда возможны.
Дробное выражение при некоторых значениях переменной может не иметь смысла.
- •
•
Дробные выражения имеют смысл при любых значениях входящих в них переменных, кроме тех, что обращают знаменатель в нуль.
Значения переменных, при которых выражение имеет смысл, называют допустимыми значениями.
Рациональная дробь – это дробь, числитель и знаменатель которой многочлены.
Примеры
В рациональной дроби допустимыми являются те значения переменных, при которых не обращается в нуль знаменатель дроби.
Чтобы найти допустимые значения переменных в дроби, необходимо:
- • Приравнять знаменатель, содержащий переменные, к нулю.
• Решить полученное уравнение. Корни этого уравнения будут являться теми значениями переменных, которые обращают знаменатель в нуль.
• Исключить эти значения из всех действительных чисел.
Пример 1.
Найти допустимые значения переменной в дроби .
1) x(x + 1) = 0
2) x = 0 или x + 1 = 0
x = 0 или x = –1.
Корни уравнения 0 и – 1.
3) Допустимыми значениями x являются все числа, кроме 0 и –1.
Пример 2.
Найти значения x, при которых дробь равна нулю.
, когда x 2 – 1 = 0 и x + 1 ≠ 0.
1) x 2 – 1 = 0
2) (x – 1)(x + 1) = 0
x = ±1
3) x + 1 ≠ 0
x ≠ –1.
при x = 1.
Алгебра. 8 класс: учеб. для общеобразоват. организаций / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. – 6-е изд. – М.: Просвещение, 2017.
Рациональные выражения
Урок 1. Алгебра 8 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Рациональные выражения»
На этом уроке мы вспомним, какие выражения называют целыми и дробными. Познакомимся с рациональными выражениями. Узнаем, какие значения называют допустимыми. А также научимся находить допустимые значения выражения.
Вы уже знакомы с целыми и дробными выражениями. Давайте вспомним их определения.
Целые выражения – это выражения, составленные из чисел и переменных, содержащие действия сложения, вычитания и умножения, а также деления на число, отличное от нуля.
В отличие от целых выражений, дробные выражения помимо действий сложения, вычитания и умножения, содержат деление на выражение с переменными.
Целые и дробные выражения называют рациональными выражениями.
Рациональными выражениями называют выражения, составленные из чисел, переменных, их степеней и знаков арифметических действий.
Напомним, что целые выражения имеют смысл при любых значениях переменных. Чтобы найти значение целого выражения, нужно подставить указанное значение переменной и выполнить все действия.
Дробное выражение при некоторых значениях переменных может не иметь смысла.
Чтобы найти значение рационального выражения, надо:
1) подставить числовое значение переменной в данное выражение;
2) выполнить все действия.
Значения переменных, при которых выражение имеет смысл, называют допустимыми значениями переменных.
Множество всех допустимых значений переменных называется областью допустимых значений (коротко ОДЗ) или областью определения выражения.
Как вы уже знаете, выражение вида называется дробью.
Дробь, числитель и знаменатель которой многочлены, называют рациональной дробью.
Найдите значение дроби.
Найдите допустимые значения переменной в выражениях:
Целые выражения – это выражения, составленные из чисел и переменных, содержащие действия сложения, вычитания и умножения, а также деления на число, отличное от нуля.
В отличие от целых выражений, дробные выражения помимо действий сложения, вычитания и умножения, содержат деление на выражение с переменными.
Рациональными выражениями называют выражения, составленные из чисел, переменных, их степеней и знаков арифметических действий.
Чтобы найти значение рационального выражения, надо:
1) Подставить числовое значение переменной в данное выражение;
2) Выполнить все действия.
Значения переменных, при которых выражение имеет смысл, называют допустимыми значениями переменных.
Множество всех допустимых значений переменных называется областью допустимых значений или областью определения выражения.
Рациональное выражение
Рациональное выражение — алгебраическое выражение, не содержащее радикалов. Другими словам, это одна или несколько алгебраических величин (чисел и букв), соединённых между собой знаками арифметических действий: сложения, вычитания, умножения и деления, возведения в целую степень и знаками последовательности этих действий (обычно скобками различного вида). Например:
См. также
Полезное
Смотреть что такое «Рациональное выражение» в других словарях:
РАЦИОНАЛЬНОЕ ВЫРАЖЕНИЕ — алгебраическое выражение, не содержащее радикалов и включающее только действия сложения, вычитания, умножения и деления. Напр., a2 + b, x/(y z2) … Большой Энциклопедический словарь
рациональное выражение — алгебраическое выражение, не содержащее радикалов и включающее только действия сложения, вычитания, умножения и деления. Например, a2 + b, х/(у z2). * * * РАЦИОНАЛЬНОЕ ВЫРАЖЕНИЕ РАЦИОНАЛЬНОЕ ВЫРАЖЕНИЕ, алгебраическое выражение, не содержащее… … Энциклопедический словарь
Рациональное выражение — алгебраическое выражение, не содержащее радикалов, например a2 + b, х/(у z3). Если входящие в Р. в. буквы считать переменными, то Р. в. задаёт рациональную функцию (См. Рациональная функция) от этих переменных … Большая советская энциклопедия
РАЦИОНАЛЬНОЕ ВЫРАЖЕНИЕ — алгебрарическое выражение, не содержащее радикалов и включающее только действия сложения, вычитания, умножения и деления. Напр., а2 + b, х/(y z2) … Естествознание. Энциклопедический словарь
ВЫРАЖЕНИЕ — первичное математическое понятие, под которым подразумевают запись из букв и чисел, соединённых знаками арифметических действий, при этом могут быть использованы скобки, обозначения функций и т.п.; обычно В формула млн. её часть. Различают В (1)… … Большая политехническая энциклопедия
РАЦИОНАЛЬНОЕ — (Rational; Rational) термин, используемый для описания мыслей, чувств и действий, согласуемых с разумом; установка, базирующаяся на объективных ценностях, полученных в результате практического опыта.«Объективные ценности устанавливаются в опыте… … Словарь по аналитической психологии
РАЦИОНАЛЬНОЕ ПОЗНАНИЕ — субъективный образ объективного мира,полученный с помощью мышления. Мышление – активный процесс обобщенного и опосредованного отражения действительности, обеспечивающий открытие на основе чувственных данных ее закономерных связей и их выражение … Философия науки и техники: тематический словарь
УРАВНЕНИЕ, РАЦИОНАЛЬНОЕ — Логическое или математическое выражение, основанное на (рациональных) предположениях о процессах. Такие уравнения отличаются от эмпирических уравнений тем, что их параметры получаются в результате дедуктивных выводов из теоретических… … Толковый словарь по психологии
РАЦИОНАЛЬНЫЙ — РАЦИОНАЛЬНЫЙ, рациональная, рациональное; рационален, рациональна, рационально. 1. прил. к рационализм (книжн.). Рациональная философия. 2. Вполне разумный, обоснованный, целесообразный. Он внес рациональное предложение. Рациональное… … Толковый словарь Ушакова
РЕЗОЛЬВЕНТА — 1) Р. а л г е б р а и ч е с к о г о у р а в н е н и я f(x)=0степени п алгебраическое уравнение g(y)=0с коэффициентами, рационально зависящими от коэффициентов f(x), такое, что знание корней этого уравнения позволяет найти корни данного уравнения… … Математическая энциклопедия
Содержание:
Рациональные выражения
Деление степеней и одночленов
В курсе алгебры 7 класса вы ознакомились с целыми выражениями, научились складывать и вычитать их, умножать и возводить в степень. Теперь рассмотрим, как можно делить выражения. Разделить выражение A на выражение В —означает найти такое выражение X1 при котором X•В = А.
, поскольку
.
Следовательно, если а — отличное от нуля число, — натуральные числа, причём
, то
Ведь по правилу умножения степеней, . Из тождества
следует правило:
при делении степеней с одинаковыми основание оставляют без изменения, а из показателя степени делимого вычитают показатель а степени делителя.
Пользуясь этим правилом, можно записать:
Если , то всегда
. Чтобы тождество а
было верно и для данного случая, в математике принято считать, что при каждом значении а, отличном от нуля,
. Запись 0° не имеет смысла.
.
Рассмотрим, как можно делить одночлены.
, поскольку
,;
Чтобы разделить одночлен на одночлен, необходимо:
Пример:
Надо разделить одночлен .
Решение:
Делим 8 на 4, — на а,
—
и
— на
. Имеем, соответственно, 2,
, 1 и
. Итак,
Но, например, одночлен
с на пс таким способом разделить нельзя. Их частное тождественно не равно некоторому одночлену. Говорят, что во множестве одночленов деление не всегда возможно. Если необходимо разделить и такие одночлены, частное которых не является одночленом, его записывают в виде дроби. Об этом вы узнаете в следующем параграфе.
Хотите знать ещё больше?
Рассмотрим, как можно делить не только одночлены, но и выражения, содержащие степени многочленов. Например,
,
.
Иногда перед делением надо преобразовать многочлены. Разделим, например, :
Известны и другие способы деления многочленов. В частности, многочлены можно делить «углом», подобно тому, как делят числа. Сравните, например, деление чисел 7488 и 234 и деление многочленов
:
,
.
Частное от деления многочленов не всегда является многочленом, как и частное от деления двух целых чисел не всегда число целое. То есть во множестве многочленов деление не всегда возможно.
Выполним вместе!
Пример:
Решение:
а) ; 6)
.
Ответ. а) ; б)
.
Пример:
Проверьте, правильно ли выполнено деление: .
Решение:
.
Произведение частного и делителя тождественно равно делимому, следовательно, деление выполнено верно.
Пример:
Упростите выражение: .
Решение:
.
Ответ:
Деление и дроби
Деление двух целых выражений не всегда можно выполнить без остатка. Например, частные нельзя записать в виде целых выражений. Деление одночленов нельзя выполнить без остатка, если делитель содержит переменную, которой нет в делимом, либо если показатель степени любой переменной в делителе больше показателя степени этой же переменной в делимом.
Если частное от деления одного выражения на другое не является целым выражением, то его записывают в виде дроби. Например:
,
.
Дробью называют частное от деления двух выражений, записанное с помощью черты дроби.
Подобно другим выражениям дроби бывают числовые и содержащие переменные.
Например, дроби ,
,
— числовые выражения,
—
выражения, содержащие переменные.
Запись — не число, поскольку на 0 делить нельзя. Следовательно, дробь
при а = 5 не имеет смысла. При всех других значениях а она имеет смысл. Говорят, что для данной дроби допустимы все значения переменной а, кроме а = 5.
Для переменных, входящих в знаменатель дроби, допустимы только те значения, которые не превращают этот знаменатель в нуль.
Рассмотрим две дроби:
Два выражения, соответствующие значения которых равны при всех допустимых значениях переменных, называются тождественно равными, или тождественными.
Это определение отличается от аналогичного определения для целых выражений только словом «допустимых». Говоря только о целых выражениях, это слово ранее мы исключали, поскольку для них все значения переменных допустимы.
Два тождественных выражения, соединённых знаком равенства, образуют тождество. Замена одного выражения другим, тождественным ему, называется тождественным преобразованием данного выражения.
Хотите знать ещё больше?
Примеры обыкновенных дробей:
;
;
.
Общее понятие дроби довольно широкое. Кроме алгебраических бывают неалгебраические дроби, вам ещё неизвестные, например.
.
Пример:
Какие значения переменных допустимы для дроби: а) ; б)
?
Решение:
6) допустимы все значения, кроме х =а и х = -а.
Пример:
Докажите, что дробь , имеет смысл при всех значениях
.
При каждом рациональном значении число
неотрицательное, а
+ 1 — положительное. Знаменатель данной дроби при каждом значении
не равен 0.
Следовательно, при каждом значении данная дробь имеет смысл, что и требовалось доказать.
Пример:
Тождественны ли выражения:
а) б)
?
Решение:
а) Представим дробь в виде частного двух одночленов и выполним деление:
. При всех допустимых значениях переменных (
) первое выражение равно второму, поэтому их соответствующие значения равны. Следовательно, выражения
и
тождественны.
б) Выполним действия в каждом выражении, используя свойства степеней: .
При всех допустимых значениях переменных () выражения принимают противоположные значения. Следовательно, они нетождественны.
Ответ. а) Выражения тождественны; 6) выражения нетождественны.
Основное свойство дроби
Вспомните основное свойство обыкновенной дроби. Если числитель и знаменатель обыкновенной дроби умножить на одно и то же натуральное число, то получим равную ему дробь. Иными словами, при любых натуральных a, b и
. Это равенство — тождество. Докажем его для любых рациональных a, b и
если б
и
.
Пусть , где
— некоторое рациональное число. По определению действия деления,
. Умножив обе части этого равенства на отличное от нуля число
, получим равенство
, отсюда
. Следовательно, если
и
, то
.
Доказанное тождество справедливо для любых дробей и является основным свойством дроби.
Если числитель и знаменатель дроби умножить или разделить на одно и то же выражение, то получим дробь, которая тождественно равна данной.
.
Здесь под «выражением» понимают выражение с переменными, которое тождественно не равно нулю, либо число, отличное от нуля.
Основное свойство дроби даёт возможность заменить дробь вида
тождественно равной ему дробью в. Такое преобразование называют сокращением дроби. Например,
Первую из этих дробей сократили на
, вторую — на
.
Исходя из основного свойства дроби, приходим к следующим выводам.
Если члены дроби — многочлены, то перед сокращением дроби их часто необходимо разложить на множители. Иногда перед сокращением дроби изменяют знак числителя или знаменателя, изменив соответственно и знак перед дробью.
Примеры:
;
.
Примечание. Последнее преобразование и равенство справедливы только для
. Чтобы не усложнять решение упражнений, такие условия можно не указывать. Каждую дробь будем рассматривать только при допустимых значениях её переменных.
Сократить дробь можно делением числителя и знаменателя на их общий делитель, выраженный не только целым выражением, но и дробным. Например, можно записать
Это равенство — тождество, верное при условии и
. Кроме того, имеются дроби, члены которых содержат выражения с модулями, например:
.
Такие дроби не относятся к алгебраическим дробям. Подробнее с ними вы ознакомитесь в старших классах. А теперь рассмотрим наиболее простые случаи. Первую дробь можно сократить на с. Равенство верно при любых значениях а и
.
Решение:
.
Ответ. а) ; б)
Пример:
Приведите к общему знаменателю дроби .
Решение:
Общий знаменатель — .
.
Ответ. .
Рациональные выражения
Выражение, составленное из чисел и переменных с помощью действий сложения, вычитания, умножения, деления или возведения в степень, называется рациональным.
Примеры рациональных выражений:
Целые выражения — это рациональные выражения, не содержащие действия деления на переменную.
Дробные выражения это рациональные выражения, содержащие действие деления на переменную.
Целые выражения и дроби — простейшие виды рациональных выражений. Другие виды этих выражений связаны между собой, как показано на схеме (рис. 9).
Словом «другие» здесь обозначены дробные рапиональные выражения, которые не являются дробями, например:
.
Уравнение называется рациональным, если его левая и правая части — рациональные выражения.
Рациональное уравнение называется дробным, если его правая или левая части — выражения дробные.
Примеры дробных уравнений:
.
Для того чтобы решать такие уравнения, необходимо знать, как выполняют действия с дробными выражениями. Поэтому в следующих параграфах будем рассматривать сложение, вычитание, умножение, деление и возведение дробей в степень.
Простейшие дробные уравнения, то есть уравнения, в которых левая часть — это дробь, а правая — нуль, решают пользуясь условием равенства дроби нулю.
Дробь равна нулю тогда и только тогда, когда числитель равен нулю, а знаменатель отличный от нуля.
Например, чтобы решить уравнение , нужно приравнять к нулю числитель и решить полученное уравнение:
.
Кроме того, проверить, не равен ли нулю при таком значении х знаменатель:
Следовательно, — корень данного уравнения.
Обратите внимание! Условие равенства дроби нулю состоит из двух частей:
Каждая из этих частей условия является одинаково важной.
Хотите знать ещё больше!
В представленной выше схеме словом «дроби» называют только рациональные дроби (часть рациональных выражений). Но дроби бывают не только рациональные, например,
Это также дроби, но нерациональные. Поэтому, забегая немного вперёд, соотношение между разными видами выражений можно представить в виде диаграммы (рис. 10).
Если выражение содержит переменные под знаком модуля, его не считают рациональным При этом многие такие выражения можно заменить двумя, тремя либо большим количеством рациональных выражений. Например, рассмотрим дробь .
Если, то
; если
, то
. Поэтому
Пример:
При каких значениях переменной х значение дроби равно нулю?
Решение:
Пример:
Имеет ли корни уравнение ?
Решение:
Ответ. Уравнение корней не имеет.
Сложение и вычитание дробей
Для натуральных чисел а, b, с справедливо равенство
.
и
. Сложив левые и правые части этих равенств, получим
.
По определению действия деления, из полученного равенства следует, что, то есть
.
Аналогично можно доказать и тождество
Из этих двух тождеств следуют правила сложения и вычитания дробей с одинаковыми знаменателями.
Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить тот же.
Чтобы найти разность дробей с одинаковыми знаменателями, необходимо из числителя уменьшаемого вычесть числитель вычитаемого, а знаменатель оставить тот же.
На основании этих правил выполняют сложение и вычитание любых дробей с одинаковыми знаменателями:
.
Примеры:
;
.
Чтобы найти сумму или разность дробей с разными знаменателями, сначала их нужно привести к общему знаменателю, как при сложении и вычитании обыкновенных дробей.
Чтобы привести дроби к общему знаменателю, знаменатель каждой дроби нужно разложить на множители. Если знаменатели дробей не имеют общих множителей, то сложение и вычитание выполняют по формуле:
.
Примеры:
;
.
Иногда нужно найти сумму или разность дроби и целого выражения. Их можно складывать или вычитать, как дроби, записав целое выражение в виде дроби со знаменателем 1.
Пример:
Аналогично упрощают выражения, состоящие из трёх или более дробей, соединённых знаками плюс» или «минус». Например,
Хотите знать ещё больше?
Если рассматривать каждое тождество только при его допустимых значениях переменных, то ость при условии, что левая и правая части имеют смысл, то мы сознательно упрощаем задачу. Доказательство, подтверждаем лишь то. что оно верно на всей области допустимых значений, но не указываем, какая это область.
Чтобы получить исчерпывающее решение такой задачи, необходимс не только убедиться, что тождество правильное для всей области допустимых значений, но и показать, какова эта область. Либо чётко указать, какие из действительных чисел не относятся к этой области. Например, показав, что , желательно указать, что доказанное равенство верно, если
и
. В ответственных случаях, например в экзаменационных работах, такие уточнения целесообразны.
Выполним вместе!
Пример:
Найдите разность дробей.
Решение:
.
Пример:
Найдите сумму дробей .
Решение:
Общий знаменатель дробей а(а 2 — с). Чтобы привести данные дроби к общему знаменателю, надо умножить первую дробь на а 2 — с, а вторую — на а.
.
Ответ. .
Пример:
Выполните действия: .
Решение:
.
Умножение дробей
Правило умножения обыкновенных дробей вы уже знаете. Для любых натуральных чисел а, b, с и d справедливо равенство
. Поскольку
, то из равенства
, по определению действия деления, имеем:
, или
. Из доказанного тождества следует правило умножения дробей.
Чтобы умножить дробь на дробь, нужно перемножить их числители и отдельно — знаменатели, затем первое произведение записать числителем, а второе — знаменателем дроби.
На основании этого правила выполняют умножение любых дробей:
.
Примеры:
;
.
Поскольку целое выражение можно считать дробью со знаменателем 1, то, по сформулированному правилу, можно перемножать дроби и целые выражения.
Примеры:
;
.
Правило умножения дробей распространяется на произведение трёх множителей и более, например:
. Возвести дробь в n-ную степень означает перемножить n таких дробей:
.
Чтобы возвести дробь в степень, необходимо возвести в эту степень числитель и знаменатель, затем первый результат записать в числителе, а второй — в знаменателе дроби. .
Пример:
Возведём дробь в пятую степень:
.
Хотите знать ещё больше?
Вы уже знаете, что для умножения многочленов возможно обратное преобразование: разложение многочленов на множители. Существует ли преобразование, обратное умножению дробей?
Любую дробь можно представить как произведение двух, трёх или произвольного количества других дробей, Например,
.
Преобразование, обратное умножению дробей, неоднозначно, неопределенно. Упростим задачу. Представьте дробь ввиде произведения двух дробей, одна из которых равна
. В данном случае ответ подобрать несложно:
.
Решение таких задач в более сложных случаях, как и операций, обратных возведению дробей в степень, рассмотрим позднее.
Выполним вместе!
Пример:
Найдите произведение добей: и
.
Решение:
.
Ответ.
Пример:
Найдите значение выражения .
Решение:
.
Ответ. При каждом значении х, кроме х= 5, значение данного выражения равно 1.
Пример:
Представьте в виде степени дроби выражение .
Решение:
.
Ответ. .
Деление дробей
Действие деления дробей — обратное умножению:
, поскольку
.
Аналогично , поскольку
. Выражение
— произведение дробей
и
. Следовательно,
Дробь называют обратной дроби
. Поэтому при делении дробей можно воспользоваться следующим правилом.
Чтобы разделить две дроби, нужно первую дробь умножить на дробь, обратную второй.
Примеры:
;
.
Поскольку целое выражение можно представить в виде дроби со знаменателем 1, то, согласно сформулированному правилу, дробь можно делить на целое выражение и целое выражение — на дробь:
;
.
Хотите знать ещё больше?
Проанализируем, при каких значениях переменных а, b, с, d значение частного существует.
Знаменатели дробей не равны нулю, поэтому и
. Не равно нулю и значение с, поскольку при этом условии значение второй дроби равно О, а на нуль делить нельзя.
Следовательно, данное частное имеет значение только в том случае, если выполняются все три следующих условия: ,
и
.
Рассмотрим, при каких значениях х имеет смысл выражение .
Если , то
; в этом случае знаменатель первой дроби равен О, и частного не существует.
Если , то
; в этом случае значение второй дроби равно О, а на нуль
Выполним вместе!
Пример:
Упростите выражение .
Решение:
Ответ. 1— с.
Пример:
Найдите частное от деления дроби на
и укажите, при каких значениях переменных частное существует.
Решение:
.
Вторая дробь не имеет смысла, если а 2 (а-1)=0, то есть при а = 0 или а = 1.
При с = 0 значение второй дроби равно 0, а на нуль делить нельзя.
Следовательно, частное этих дробей существует, если ,
,
и
. Ответ.
частное существует при
,
,
и
Преобразование рациональных выражений
Вы уже знаете, что любое числовое выражение после выполнения всех действий принимает конкретное значение, выраженное некоторым числом. Преобразования рациональных выражений выполняют так же, как находят значение числового выражения. Заданное выражение заменяют другим, тождественным ему. Такие преобразования называются тождественными преобразованиями.
Тождественные преобразования рациональных выражений выполняют частями или «цепочкой», используя известные вам из предыдущих параграфов правила действий с дробями и целыми выражениями. Если выражение содержит несколько действий разных ступеней, то их выполняют в такой же последовательности, что и преобразования числовых выражений:
Любое рациональное дробное выражение можно представить в виде дроби, а некоторые — даже в виде целого выражения. Рассмотрим, например, выражения:
.
Первое из них можно преобразовать таким образом:
1) ; 2)
;
3) .
Следовательно, .
Аналогичным способом (последовательно) можно упростить и второе выражение. А можно преобразовать и «цепочкой»:
Хотите знать больше?
В математике часто приходится не только упрощать выражения, например сумму нескольких дробей записать одним выражением, но и осуществлять обратные операции.
Задача (О. Коши):
Решение. Пусть .
Преобразуем правую часть равенства в дробь:
.
Подставляем это выражение в правую часть (1):
, отсюда
.
Следовательно, .
Ответ. .
Рациональные уравнения
Умение преобразовывать дробные выражения необходимо, в частности, для решения дробных уравнений.
Вы уже знаете, что уравнение ‚ называется рациональным, если его левая и правая части — рациональные выражения. Рациональное уравнение называют дробным, если его правая, левая либо правая и левая части — дробные выражения.
Примеры дробных уравнений:
.
При решении целого уравнения его часто стараются заменить равносильным. С дробными уравнениями это возможно лишь в некоторых случаях. Их преимущественно заменяют уравнениями-следствиями.
Уравнения называют следствием данного, если все решения данного уравнения удовлетворяют полученное уравнение.
Уравнение-следствие удовлетворяют все корни данного уравнения, но кроме них оно может иметь и посторонние корни.
Дробные рациональные уравнения можно решать разными способами. В частности:
Рассмотрим на конкретных примерах каждый способ.
Пример:
.
Решение:
Заменим данное уравнение равносильным, в котором правая часть — нуль, а левая — дробь. Для этого дробь перенесём из правой части в левую, изменив знак перед ней на противоположный, и упростим полученное дробное выражение:
,
.
Полученное уравнение равносильно данному. Решить его просто, поскольку дробь равна нулю лишь тогда, когда числитель равен нулю, а знаменатель отличный от нуля.
Приравняем числитель к нулю: , если х = 0 или х=2.
Следовательно, х = 2 не удовлетворяет данное уравнение.
Пример:
Решение:
.
.
Проверка. .
Если дробное уравнение имеет вид пропорции либо его можно представить в виде пропорции, то используется основное свойство пропорции. В этом случае также получаем уравнение-следствие.
Известные вам линейные уравнения — это отдельный вид рациональных уравнений. Как именно связаны между собой рациональные уравнения, иллюстрирует рисунок 18. Рациональные уравнения, которые не являются целыми, называют дробно-рациональными. Только некоторые из них сводятся к линейным. Большая часть дробнорациональных уравнений сводится к таким, решать которые вы ещё не умеете. Решение некоторых из них рассмотрим позднее.
Рис. 18
Дробно-рациональными бывают не только уравнения с одной, но и с двумя, тремя и большим количеством переменных, а также системы таких уравнений. Например, решим систему уравнений:
Суммируем левые и правые части этих уравнений и получим:
Подставляем это значение х в первое уравнение: , отсюда у=3. Ответ: х = 3, у= 3.
Выполним вместе!
Пример:
Решите уравнение .
Решение:
Ответ. Уравнение решений не имеет.
Пример:
Какое число нужно прибавить к членам дроби , чтобы получить дробь, равную
?
Решение:
Обозначим искомое число буквой х. Тогда по условию задачи:
Поверка. .
Ответ. Искомое число равно 7.
Степени с целыми показателями
Некоторые дроби часто записывают в виде степеней с отрицательными показателями. Например, вместо
пишут
.
Вспомните, как делят степени с одинаковыми основаниями:
Рассматривая степени только с положительными показателями, отмечают, что последнее равенство верно только при . Если это ограничение снять, то получим:
.
Поэтому условились, что .
.
Следовательно, желательно условиться, что
.
Итак, можно рассматривать степени с произвольными целыми показателями. Объясним кратко смысл этого понятия:
Свойства степеней с целыми показателями такие же, как и степеней с натуральными показателями:
Докажем первое из этих тождеств (его называют основным свойством степеней) для случая, когда и
— целые отрицательные числа. При этом условии
и
, где
— натуральные числа. Поэтому
.
Аналогично можно доказать равенство для случая, когда один из показателей
и
отрицательный, а другой — положительный или равен нулю.
Обратите внимание на степени, в которых основание или показатель равны нулю.
Если а и n не равны нулю, то
Выражение 0° не имеет смысла, это не число, как и выражение . Выражения, содержащие степени с целыми показателями, можно преобразовать двумя способами: заменить их дробями либо использовать свойства степеней. Например, упростим выражение
.
.
.
Выполним вместе!
Пример:
Решение:
а) ; b)
.
Пример:
Запишите без знаменателя выражение .
Решение:
Ответ. .
Пример:
Упростите выражение: .
Решение:
.
Ответ: .
Стандартный вид числа
Как выполнять действия с числами, записанными в стандартном виде, покажем на примерах.
Обратите внимание!
Числа, записанные в стандартном виде, выражают преимущественно приближённые значения величин. Это объясняется тем, что так часто записывают значения расстояний, площадей, масс, объёмов, скоростей, температур, которые почти всегда приближённые.
Хотите знать ещё больше?
Как следует понимать выражение число х больше, чем у, на порядок? Это означает, что число х больше у приблизительно в 10 раз.
Выполним вместе! Пример:
Запишите в стандартном виде число: а) 320; б) 0,4; в) 1000 000; г) 0,00000027.
Решение:
Пример:
Решение:
Функция y=k/x
Функция
Вспомните, что такое аргумент функции, её область определения, множество значении, как задают функции
Далее мы рассмотрим функцию, заданную формулой , где k — произвольное действительное число, отличное от нуля; аргумент х может принимать не только положительные, но и отрицательные значения.
Например, дана функция . Область её определения множество всех действительных чисел, кроме х = О (поскольку на нуль делить нельзя). Составим таблицу значений этой функции для нескольких значений аргумента:
х | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y | -1 | -1.2 | -1.5 | -2 | -3 | -6 | — | 6 | 3 | 2 | 1.5 | 1.2 | 1 |
Обозначим точки, координаты которых приведены в таблице (рис. 23, а). Если бы на этой же координатной плоскости было нанесено больше точек, координаты которых удовлетворяют равенство , то они разместились бы так, как показано на рисунке 23, б. Если для каждого действительного значения х, кроме х = 0, по формуле
— вычислить соответствующее значение у и нанести все точки с полученными координатами на координатную плоскость, то получим график данной функции (рис. 23, в). Такую линию называют гиперболой. Гипербола состоит из двух ветвей.
График функции — гипербола, симметричная относительно начала координат. Её ветви располагаются в I и III координатных углах. (Оси координат делят координатную плоскость на четыре координатных угла, их также называют координатными четвертями, или квадрантами, и нумеруют, как показано на рисунке 24.).
Если таким способом построить график функции , то получим также гиперболу, только её ветви будут располагаться в II и IV координатных углах (рис. 25).
График каждой функции , где k — отличное от нуля данное число, — это гипербола, симметричная относительно начала координат. Если k > 0, то ветви такой гиперболы расположены в I и III координатных углах, если k 2 ещё писали bb.
Степени с целыми показателями вводили в математику постепенно. Около 4 тыс. лет тому назад учёные Вавилона рассматривали квадрат и куб числа при вычислении площади квадрата и объёма куба. Донаших дней сохранились глиняные плитки с таблицами квадратов и кубов натуральных чисел, изготовленные древними вавилонянами. Со временем учёные стали рассматривать четвёртую, пятую степени и выше, называя их сначала квадрато-квадратом, кубо-квадратом и т. д.
Степень с нулевым показателем ввели в V в. независимо друг от друга самаркандец ал-Каши и француз Ф. Н. Шюке. Степени с отрицательными показателями Ф. Н. Шюке также использовал. Теорию степеней с отрицательными показателями разработал в ХVII в. английский математик Д. Валлис. Он отождествлял последовательности
,
,
Стандартный вид числа ввели в науку только в ХХ в. с началом использования электронных вычислительных машин (ЭВМ).
ОСНОВНОЕ В ГЛАВЕ
Частное от деления выражения А на выражение В можно записать в виде дроби . Дробь имеет смысл только тогда, когда её знаменатель не равен нулю. Алгебраической дробью называют дробь, числитель и знаменатель которой — много-члены. Выражение, представленное переменными и числами с помощью действий сложения, вычитания, умножения, деления или возведения в степень с целым показателем, называется рациональным. При любых значениях а, b и с
(основное свойство дроби). На основании этого свойства дроби можно сокращать или приводить к общему знаменателю.
Действия с любыми дробями можно выполнять так же, как с обыкновенными дробями. Если знаменатели не равны нулю, то всегда
.
Свойства степеней с целыми показателями аналогичны свойствам степеней с натуральными показателями. Если числа m и n — целые, а и b — отличные от нуля, то всегда:
Функция определена на множестве всех действительных чисел, за исключением х = 0. Если
> 0, то она убывающая.
Функция у = х 2
х | -3 | -2,5 | -2 | -1,5 | -1 | 0 | 1 | 1,5 | 2 | 2,5 | 3 |
y | 9 | 6,25 | 4 | 2,25 | 1 | 0 | 1 | 2,25 | 4 | 6,25 | 9 |