какие генетические механизмы лежат в основе видообразования
Какие генетические механизмы лежат в основе видообразования
Подробное решение параграф § 13 по биологии для учащихся 11 класса, авторов А.В. Теремов, Р.А. Петросова Углубленный уровень 2017
Вопрос. Вспомните, что такое географическая и биологическая (репродуктивная) изоляция популяций вида. Какую роль в эволюции играет изоляция?
Ответ. Выделяют два основных типа изоляции популяций: географическую и биологическую. Географическая изоляция связала с различными изменениями в ландшафте (возникновение горных хребтов, водных барьеров, лесных массивов и т. п.). Географическая изоляция имеет важное значение в видообразовании. Эволюционные преобразования в территориально разобщенных популяциях могут привести к биологической изоляции, что в дальнейшем может вести к образованию самостоятельных видов.
Биологическая изоляция, или репродуктивная, определяется всевозможными различиями индивидуумов внутри вида, предупреждающими скрещивание. Выделяют 3 основные формы биологической изоляции: экологическую, морфофизиологическую и генетическую.
Экологическая изоляция наблюдается, когда потенциальные партнеры по спариванию не встречаются. Это может быть в тех случаях, когда особи одной популяции имеют разные местообитания в пределах одной и той же территории (биотопическая изоляция) либо когда половое созревание у потенциальных партнеров по спариванию наступает неодновременно (сезонная изоляция).
Морфофизиологическая изоляция обусловлена особенностями строения и функционирования органов размножения, когда изменяется не вероятность встреч (как при экологической изоляции), а вероятность скрещивания. Скрещиванию препятствуют размеры особей, несоответствие в строении копулятивных аппаратов, гибель половых клеток и т. п.
Генетическая изоляция наступает тогда, когда скрещивающиеся пары имеют существенные генетические различия, например, по числу и строению хромосом, в результате чего снижается жизнеспособность зигот и зародышей, образуются стерильные потомки.
Вопрос 1. Под влиянием каких факторов эволюции происходит видообразование?
Ответ. В популяциях одного вида действие предпосылок эволюции приводит к возникновению разнообразия генотипов и фенотипов. Это является основой для борьбы за существование и естественного отбора. Выделяют две формы изоляции: географическую и биологическую.
Географическая (пространственная) изоляция – обособление определенной популяции от другой популяции того же вида какими-либо трудно преодолимыми барьерами. Первая причина – большие территориальные разрывы между популяциями у видов, имеющих мозаичные ареалы. Возникновение этих разрывов может быть связано с ледниками, деятельностью человека или расселением популяций за пределы исходного ареала. Вторая причина – географические барьеры, разделяющие популяции (реки, горы, ущелья, участки леса, луга, болота). Географическая изоляция препятствует свободному скрещиванию особей разделенных популяций вследствие невозможности их встречи из-за географического барьера.
Биологическая изоляция обусловлена биологическими различиями между особями популяций. В зависимости от характера различий выделяют четыре вида биологической изоляции: экологическую, этологическую, морфофизиологическую и генетическую.
Экологическая изоляция обусловлена смещением репродуктивных периодов (сроков цветения, гнездования, спаривания, нереста) или разными местами размножения, что препятствует свободному скрещиванию особей популяций.
Этологическая изоляция обусловлена особенностями поведения особей в брачный период. Ничтожные на первый взгляд отличия в ритуалах ухаживания при обмене зрительными, звуковыми, химическими сигналами могут приводить к прекращению этого ритуала и ограничению спаривания.
Морфофизиологическая изоляция обусловлена различиями в размерах особей или в строении половых систем (некоторые виды легочных моллюсков, грызунов). Она не мешает встрече полов, но препятствует скрещиванию особей из-за невозможности оплодотворения.
Генетическая изоляция обусловлена крупными хромосомными и геномными перестройками, вызывающими различия в числе, форме и составе хромосом. Она не препятствует встрече полов и оплодотворению. Но исключает обмен генетической информацией между популяциями вследствие гибели зигот после оплодотворения, различной степени стерильности гибридов и их пониженной жизнеспособности.
Действие любой формы изоляции на эволюционный материал ненаправленно, но является обязательным условием усиления генетических различий между популяциями. Важная характеристика изоляции – ее длительность, благодаря чему действие разнонаправленного естественного отбора приводит к расхождению признаков популяций – дивергенции. В результате популяции превращаются в разновидности, или расы. Сохранение изоляции приводит к усилению различий между разновидностями, и они превращаются в подвиды. Если усиление различий между подвидами будет препятствовать их скрещиванию, значит, они стали генетически закрытыми системами. Между ними возникла репродуктивная изоляция. Подвиды превратились в новые виды.
Таким образом, факторами видообразования являются:
1. предпосылки эволюции: мутационная и комбинативная изменчивость, популяционные волны, поток и дрейф генов, изоляция;
2. движущие силы эволюции: борьба за существование, естественный отбор
Вопрос 2. Какие генетические механизмы лежат в основе видообразования?
Ответ. Каждый вид – это замкнутая генетическая система. Особи одного вида могут друг с другом скрещиваться и давать плодовитое потомство, а представители разных видов не скрещиваются вовсе, а если и скрещиваются, то потомства не дают, а если и дают, то потомство это бесплодно. Следовательно, дивергентному видообразованию должно предшествовать возникновение изолированных популяций внутри предкового вида. Изоляция служит пусковым механизмом видообразования.
Репродуктивная изоляция может возникать на основе геномных и хромосомных перестроек. Так, например, полиплоидия может служить надежным и эффективным способом репродуктивной изоляции. Гибриды между растениями с разной степенью плоидности почти всегда стерильны. Здесь, однако, возникает серьезная проблема. Если перестройка вызывает стерильность у гетерозигот, то она практически не имеет шансов размножиться и распространиться в популяции. Эта проблема довольно легко разрешается, если носитель перестройки может размножаться вегетативно. В таком случае в пределах одной территории довольно быстро появляется группа его потомков, которые способны скрещиваться друг с другом и репродуктивно изолированы от всей остальной популяции, обитающей на той же территории. Видимо именно поэтому полиплоидия часто встречается у видов растений, способных к вегетативному размножению и у животных способных к партеногенезу, и крайне редко у видов с половым размножением.
Одним из вариантов симпатрического видообразования является гибридогенное видообразование. В этом случае частичное преодоление барьера репродуктивной изоляции между двумя симпатрическими видами может привести к возникновению нового вида, который оказывается изолированным от обоих родительских видов. Свидетельствами в пользу этого пути видообразования являются некоторые партеногенетические виды ящериц, аллополиплоидные виды растений.
Вопрос 3. Каковы пути и способы видообразования? Приведите соответствующие примеры.
Ответ. Видообразование – это направляемый естественным отбором процесс превращения генетически изолированных популяций в новые виды. Выделяют два пути видообразования – аллопатрическое и симпатрическое. Аллопатрическое видообразование (от греч. alios – разный, patris – родина) связано с пространственной изоляцией популяций. В зависимости от характера изолирующих механизмов различают два способа аллопатрического видообразования: географическое и экологическое.
Географическое видообразование связано с изменением ареала вида. Оно происходит путём расселения особей на новые территории или разделения прежнего ареала на фрагменты. В результате образуются географические расы (подвиды), которые становятся родоначальниками новых видов.
Примером видообразования в результате расселения особей на новые территории обитания может служить появление двух видов больших чаек – серебристой и клуши – в районе Северного и Балтийского морей.
Экологическое видообразование связано с изменением экологической ниши вида. Вследствие этого в разных условиях обитания образуются экологические расы (экотипы), которые становятся родоначальниками новых видов. Пример экологического видообразования – несколько видов синиц, отличающихся пищевой специализацией и местами обитания
Симпатрическое видообразование (от греч. syn – вместе, patris – родина) не связано с пространственной изоляцией популяций, ибо осуществляется в пределах ареала исходного вида двумя способами генетического обособления популяций: полиплоидизацией и гибридизацией. Видообразование полиплоидизацией происходит в случае быстрого увеличения хромосомного набора особей под действием мутагенных факторов и при ошибках в процессе деления клеток. Если полиплоидные формы окажутся более жизнеспособными и пройдут естественный отбор, то они могут дать начало новому полиплоидному виду и полностью вытеснить из ареала диплоидный вид. Например. в роде Хризантема все виды имеют число хромосом, кратное 9, т. е. 18, 36, 54 и даже 90. В роде Паслён также есть виды растений, число хромосом которых кратно диплоидному набору. Это позволяет предположить, что они произошли от диплоидных предковых видов растений вследствие их полиплоидизации.
Гибридогенное видообразование происходит при скрещивании двух разных, как правило близкородственных видов организмов. Образующееся от такого скрещивания потомство в большинстве случаев оказывается бесплодным. Однако при последующей полиплоидизации бесплодие межвидовых и межродовых гибридов может быть преодолено. культурная слива образовалась в результате гибридизации двух дикорастущих видов – тёрна и алычи. Примером дикорастущего гибридогенного вида служит рябинокизильник, встречающийся в лесах Южной Якутии по берегам реки Алдан. Этот межродовой гибрид унаследовал от рябины
Вопрос 4. Происходит ли процесс видообразования в наше время и можно ли его непосредственно наблюдать? Ответ обоснуйте.
Ответ. Процесс видообразования беспрерывен, т. е. идет всегда, в т. ч. и в наше время. Только вот 1 человеческой жизни недостаточно, чтобы увидеть эти изменения и наблюдать появление новых видов.
Процесс видообразования у самостоятельно живущих организмов (не вирусов) в настоящее время происходит со скоростью порядка один новый вид в год на всю биосферу, но наблюдать этот процесс невозможно в силу недостаточной разрешающей способности существующей техники таких измерений.
Процесс видообразования, согласно синтетической теории эволюции, очень долог, между тем по сальтационным теориям видообразование происходит очень быстро. Поэтому, собственно, процесс видообразования от начала до конца пока никто не наблюдал. Несмотря на множество экспериментов, представления о механизмах видообразования – это теории со слабой практической базой (исключение составляют эксперименты по ресинтезу видов, сформировавшихся путём полиплоидизации). Есть разные группы в пределах одного вида, в разной степени разошедшиеся по каким-либо причинам. Тем не менее, эти группы всё ещё относятся к одному виду. Есть группы очень близких видов, тем не менее их образование произошло довольно давно по историческим меркам, за пределами наблюдений.
Вопрос 5. На небольшом вулканическом острове Оаху Гавайского архипелага, изрезанном скальными гребнями, имеется 25 долин, заросших тропическим лесом. В них обитает 25 видов наземных улиток. В каждой из долин встречается свой вид улиток. Условия жизни в этих долинах абсолютно одинаковые и не являются причиной видообразования. Что стало причиной видообразования? Ответ поясните.
Ответ. В каждой долине, заросшей лесом, свой вид. Долины разделяют скалистые гребни. Скалы раскаляются от солнца и для улиток они непреодолимы. В генофонде улиток каждой долины накапливались разные мутации, они подвергались отбору, и этого было достаточно для видообразования, так как условия жизни во всех долинах тропического острова практически одинаковые. Значение генетических различий состоит в том, что даже при одинаковых условиях борьбы за существование, но при разной генетической изменчивости отбор в соседних популяциях может идти в разных направлениях.
Видообразование — личное дело каждого
Российские ученые предложили оригинальный механизм видообразования, дополняющий клаcсические дарвиновские схемы. Согласно новой версии, в формировании репродуктивной изоляции может участвовать иммунная система или иные системы различения «своего» и «чужого» на химическом уровне. Эти системы, по-видимому, играют важную роль в подборе полового партнера, наиболее подходящего по биохимии и генетике. Хотя прямых экспериментальных доказательств своей гипотезы авторы не предложили, они представили в ее пользу широкий набор фактов и явлений.
Классические схемы видообразования предлагают три вероятных механизма. Первый путь — конкурентная борьба, в результате которой слабые вытесняются, а сильные получают преимущество, в результате чего организмы становятся всё более совершенными. Так может идти филетическая эволюция (эволюция без расхождения). Второй путь — возникновение непреодолимых физических барьеров для скрещивания внутри одной популяции (аллопатрическое видообразование). Из-за неизбежной разницы условий и накопления мутаций в каждой из изолированных частей популяции эволюция пойдет особо, получатся разные виды. Теоретически ученые признают еще и третий путь видообразования, для которого не обязательно делить целую популяцию на части физическими барьерами. Причиной расхождения могут стать в таком случае экологические преграды; виды начнут расходиться за счет приспособления к разным нишам в пределах общего ареала. Однако в этом третьем случае трудно вообразить, как могла бы возникнуть репродуктивная изоляция, а ведь это необходимо для сохранения разницы генофондов получающихся видов.
Как внутри популяции организуются группы животных, которые станут скрещиваться лишь с себе подобными мутантами? Для специалистов по эволюции подобное событие выглядит сродни знаменитому демону Максвелла. Например, если изменился стиль ухаживания самца, то должны соответствующим образом измениться и вкусы самки; если в результате мутации изменился феромон — должен адекватно измениться и рецептор, воспринимающий этот феромон. Мало того, эти сложные комплексные преобразования должны быть согласованы еще и с экологическими адаптациями, с которых всё, собственно, и началось.
Поэтому многие биологи не слишком-то жалуют это пресловутое симпатрическое — то есть происходящее в одном месте — видообразование, хотя в природе известно немало примеров, его подтверждающих. В журнале Nature только что опубликованы две статьи о практически бесспорных случаях у животных и растений (см. новости на «Элементах» от 13.02.06 о рыбах и пальмах). Многие факты говорят о том, что симпатрическое видообразование не просто происходит в природе, а происходит довольно часто и, главное, быстро — за какие-нибудь сотни или даже десятки лет.
Целый ряд опытов по «искусственному видообразованию» у насекомых показал, что способность избирательно скрещиваться только с себе подобными (эндогамия) может возникать очень быстро — всего за десяток поколений — в ходе интенсивного отбора в малопригодных для жизни, стрессовых условиях. Причем происходит это как будто автоматически: никакого специального отбора по способности выбирать «правильного» партнера вроде бы нет (отбор идет только на выживаемость в критических условиях), а направленное изменение брачных предпочтений все-таки происходит.
Один из удивительных опытов по видообразованию был проведен на мухах дрозофилах. Мух приучили к не свойственной им пище: в двух пробирках дрозофил кормили мальтозой, а в двух — крахмалом. Когда несчастные мухи после периода сверхвысокой смертности кое-как приспособились (за 10-15 поколений) к этой неудобоваримой для них пище, экспериментаторы провели опыты по избирательности скрещиваний. Оказалось, что мальтозные мухи предпочитали скрещиваться с мальтозными, пусть даже из другой пробирки, а крахмальные — с крахмальными. Как такое произошло, как мухи узнавали товарищей по несчастью, или товарищей по новому биохимическому типу?
С точки зрения классических моделей на этот вопрос ответить трудновато. А. В. Марков из Палеонтологического института и А. М. Куликов из Института биологии развития предположили, что в этом случае и в ряде других похожих в распознавании себе подобных участвуют компоненты иммунной системы или их аналоги. Иммунная система имеет давнюю историю и берет начало от древнейших молекулярных систем различения «своих» и «чужих», имевшихся уже у одноклеточных.
У позвоночных на ранних стадиях индивидуального развития формируется уникальный биохимический «автопортрет», представляющий собой персональный набор белков Главного комплекса гистосовместимости (ГКГ) и связанных с ними коротких пептидов — обрезков разнообразных белков организма. Этот набор все клетки организма выставляют на своей поверхности для сканирования клетками иммунной системы, как бы говоря им «вот это — наше, запоминайте, а всё остальное — чужое». И лимфоциты запоминают. Если в организм попадет чужеродный белок, его фрагменты тоже будут присоединены к белкам ГКГ и выставлены на поверхность клеток. И лимфоциты сразу заметят чужое присутствие. ГКГ нужен не только для борьбы с инфекциями, но и для поддержания целостности организма, предотвращения несанкционированных изменений собственных клеток (например, раковые клетки тоже в норме воспринимаются лимфоцитами как чужаки).
Иммунная система примерно в том виде, в каком мы ее знаем у человека, включая ГКГ, появилась у рыб, хотя системы распознавания «свой—чужой» имеются у всех живых существ, включая беспозвоночных, растения, одноклеточных эукариот и даже бактерий. Однако борьба с инфекциями и поддержание целостности многоклеточного организма не являются первейшими (читай: древнейшими) функциями этих систем. Авторы подобрали перечень доказательств, что не менее важная их функция — подбор полового партнера на основе степени генетической близости.
У позвоночных ГКГ связан со специальным органом полового обоняния — с так называемым вомероназальным органом (он есть и у человека, а вы не знали!?). Недавно было установлено, что в вомероназальном органе есть специальные рецепторы, реагирующие на пептиды ГКГ. Именно эти пептиды, по-видимому, составляют уникальный «персональный запах», по которому, как показали эксперименты на животных и людях, млекопитающие получают исчерпывающую информацию о своих сородичах, включая степень их родства, или генетической близости, к нюхающему субъекту.
Не случайно у многих животных необходимой частью брачного ухаживания является обнюхивание друг друга. У людей обонятельная идентификация сородичей происходит на бессознательном уровне, потому что нервы от вомероназального органа не идут в кору больших полушарий, а идут прямо в гипоталамус, регулирующий эмоции и гормональный фон. Недавно было показано, что вомероназальные рецепторы действуют в комплексе со специальными белками ГКГ. Таким образом, оказалось, что ключевые компоненты иммунной системы (белки и пептиды ГКГ) принимают непосредственное участие и в формировании «персонального запаха», и в его восприятии.
Наконец, на рыбах колюшках в прошлом году было экспериментально показано прямое влияние пептидов ГКГ, выделяемых самцом, на выбор самкой брачного партнера (самки у колюшек предпочитают брать в мужья не слишком близких, но и не чрезмерно дальних родственников; и это, по-видимому, общее правило). Кстати, колюшки весьма склонны к симпатрическому видообразованию и часто образуют в озерах пары дискретных, сильно различающихся морфотипов.
По-видимому, при формировании брачной пары животные тестируют потенциальных партнеров на степень генетической близости при помощи систем различения своих и чужих, включая иммунную. Некое оптимальное число «чужеродных» антигенов, содержащихся в персональном запахе партнера, повышает его привлекательность; слишком малое или слишком большое их число оказывает противоположный эффект. Такой механизм способен обеспечить быстрое и, главное, совершенно автоматическое зарождение репродуктивной изоляции между группировками, подвергшимися разнонаправленному отбору (что и наблюдалось в вышеописанных экспериментах). Такой отбор может автоматически сдвинуть неизменившихся представителей предковой популяции (или группы, изменившиеся в другом направлении) за пределы «иммунологического оптимума» генетической близости.
Оптимальный выбор брачного партнера — наиважнейшее условие рождения жизнеспособного и конкурентоспособного потомства. Вся эволюция направлена на решение этой важнейшей стратегической задачи вида. Иммунная система идеально приспособлена для ее решения. А иначе как самке выбрать среди толпы претендентов относительно подходящего?
«Иммунологическое» тестирование при выборе брачных партнеров оптимизирует затраты по поиску себе подобных, и никакой «панмиксии» (абсолютно равновероятного скрещивания всех со всеми) в природе не существует, хотя именно на этом допущении основано большинство моделей микроэволюции и популяционной генетики. Именно поэтому скорость обособления из целой популяции какой-то ее части с тем или иным набором генетических отличий может быть чрезвычайно высока. Видообразование по симпатрическому типу в природе должно быть существенно более распространенным явлением, чем предполагали ранее, просто в каждом конкретном случае очень трудно доказать, что в прошлом два данных вида никогда не были пространственно разобщены. Для симпатрического видообразования необходимо разнообразие условий среды и организация оперативного реагирования при выборе себе подобных. Вспомним факт, хорошо известный палеонтологам: чаще всего виды образуются в каком-то одном месте, в центре разнообразия, целыми букетами, а не последовательными цепочками или точечно в разных местах.
Ну а генетическую подоплеку иммунной избирательности и последующей изоляции ученым предстоит еще узнать. В организации иммунной системы, особенно у беспозвоночных, пока еще слишком много неизвестного. Кстати, не следует думать, что предполагаемый механизм «иммунологического» тестирования партнеров может работать только у животных. Растения тоже выбирают себе партнеров на основе степени их родства: известны такие явления, как выбор пыльцы и «самонесовместимость» (слишком близкородственные пыльцевые зерна отвергаются). И без иммунологии здесь тоже не обошлось: в элиминации неподходящей пыльцы участвуют ферменты РНК-азы, изначальная функция которых — иммунологическая, они защищают растение от инфекций, а для этого, разумеется, нужно уметь отличать «чужое» от «своего». Впрочем, что здесь изначально, а что вторично — это еще вопрос.
Интересный пример видообразования с прямым участием систем различения своего и чужого — это инфекционное видообразование у насекомых и других членистоногих. У многих видов членистоногих скрещивание контролируется паразитической бактерией вольбахией, которая способна вызывать репродуктивную несовместимость между насекомыми, зараженными различными разновидностями бактерии. В основе этого явления лежит умение вольбахии безошибочно отличать собственную разновидность от чужих (подробнее см. Антимужской микроб).
Таким образом могут появляться новые разновидности животных, которые не способны скрещиваться между собой, то есть аналогичны нормальным видам. В настоящее время ученым становится всё больше известно о таких случаях, так что на сегодня уже трудно недооценивать роль инфекционного видообразования в эволюции самого разнообразного класса животных — насекомых.
Источник: Марков А. В., Куликов А. М. Системы различения «своего» и «чужого» и формирование репродуктивной изоляции (гипотеза иммунологического тестирования брачных партнеров) // Успехи современной биологии. 2006. № 1.
См. также:
А. В. Марков. Как отличить своих от чужих? Неканонические механизмы репродуктивной изоляции.
Какие генетические механизмы лежат в основе видообразования?
Обсуждение вопроса:
Каждый вид – это замкнутая генетическая система. Особи одного вида могут друг с другом скрещиваться и давать плодовитое потомство, а представители разных видов не скрещиваются вовсе, а если и скрещиваются, то потомства не дают, а если и дают, то потомство это бесплодно. Следовательно, дивергентному видообразованию должно предшествовать возникновение изолированных популяций внутри предкового вида. Изоляция служит пусковым механизмом видообразования.
Репродуктивная изоляция может возникать на основе геномных и хромосомных перестроек. Так, например, полиплоидия может служить надежным и эффективным способом репродуктивной изоляции. Гибриды между растениями с разной степенью плоидности почти всегда стерильны. Здесь, однако, возникает серьезная проблема. Если перестройка вызывает стерильность у гетерозигот, то она практически не имеет шансов размножиться и распространиться в популяции. Эта проблема довольно легко разрешается, если носитель перестройки может размножаться вегетативно. В таком случае в пределах одной территории довольно быстро появляется группа его потомков, которые способны скрещиваться друг с другом и репродуктивно изолированы от всей остальной популяции, обитающей на той же территории. Видимо именно поэтому полиплоидия часто встречается у видов растений, способных к вегетативному размножению и у животных способных к партеногенезу, и крайне редко у видов с половым размножением.
Одним из вариантов симпатрического видообразования является гибридогенное видообразование. В этом случае частичное преодоление барьера репродуктивной изоляции между двумя симпатрическими видами может привести к возникновению нового вида, который оказывается изолированным от обоих родительских видов. Свидетельствами в пользу этого пути видообразования являются некоторые партеногенетические виды ящериц, аллополиплоидные виды растений.
Симпатрическое видообразование может протекать несколькими способами. Один из них – возникновение новых видов при быстром изменении кариотипа путём полиплоидизации. Известны группы близких видов, обычно растений, с кратным числом хромосом. Другой способ симпатрического видообразования – гибридизация с последующим удвоением числа хромосом. Сейчас известно немало видов, гибридогенное происхождение и характер генома которых может считаться экспериментально доказанным. Третий способ симпатрического видообразования – возникновение репродуктивной изоляции особей внутри первоначально единой популяции в результате фрагментации или слияния хромосом и других хромосомных перестроек. Этот способ распространён как у растений, так и у животных. Особенностью симпатрического пути видообразования является то, что он приводит к возникновению новых видов, всегда морфологически близких к исходному виду. Лишь в случае гибридогенного возникновения видов появляется новая видовая форма, отличная от каждой из родительских.
Вызывается разделением ареала вида на несколько изолированных частей. Возникновение географических преград (горных хребтов, морских проливов и пр.) приводит к возникновению изолятов – географически изолированных популяций. При этом на каждую такую часть отбор может действовать по-разному, а эффекты дрейфа генов и мутационного процесса будут явно отличаться. Тогда со временем в изолированных частях будут накапливаться новые генотипы и фенотипы. Особи в разных частях ранее единого ареала могут изменить свою экологическую нишу. При таких исторических процессах степень расхождения групп может достигнуть видового уровня. Согласно наиболее распространенным представлениям, новые виды могут появляться в условиях пространственной изоляции популяций, т. е. из популяций, занимающих разные географические ареалы. Теория географического видообразования создана К. Джорданом, Б. Реншем, Ф. Добжанским, Э. Майром. Это видообразование есть результат пространственной изоляции, значение которой первым подчеркнул М. Вагенер. Новые виды могут появляться в условиях пространственной изоляции популяций, т. е. из популяций, занимающих разные географические ареалы. Пространственная изоляция может возникать в ходе распространения вида по ареалу. На пике численности обычно усиливается миграция особей, и ареал вида расширяется.