какие двигательные единицы имеют высокую силу сокращения
Двигательная единица
Мышечное волокно скелетной мышцы способно сократиться лишь после того, как получит нервный сигнал от исполнительного (моторного) нейрона из центральной нервной системы.
Если в действие включается небольшое количество двигательных единиц, сокращение слабое. Если количество двигательных единиц увеличено, сокращение становится более сильным. Однако даже при самом сильном сокращении хорошо тренированного человека работает небольшой процент двигательных единиц. При длительном сокращении они работают поочередно, сменяя друг друга.
Типы двигательных единиц
Медленные неутомляемые двигательные единицы (тип I) [ ]
Наименьшие величины мотонейронов;
Наиболее низкие пороги их активации;
Наименьшая толщина аксонов;
Медленнее скорость проведения возбуждения;
У мотонейронов низкая частота разрядов (6-10 импульсов/сек);
С повышением силы сокращения частота импульсов повышается незначительно и поддерживается длительное время.
Быстрые легкоутомляемые двигательные единицы (тип II Б) [ ]
Наиболее крупные мотонейроны;
Мотонейроны обладают наиболее высоким порогом возбуждения;
Толстый аксон, иннервирующий большую группу мышечных волокон (300-800 шт) типа ББВ
Скорость проведения нервных импульсов по аксону больше, частота импульсации 25-50 импульсов/сек;
С ростом силы сокращения частота импульсации возрастает, но мотонейроны быстро утомляются.
Эффект начала тренировок. Почему мышцы не увеличиваются, но сила прирастает. [ ]
Двигательная единица мыщцы
Мышцы состоят из клеток (волокон), которые сокращаются при стимуляции. Скелетная мускулатура отвечает за передвижение тела, изменение позы и за движение газов при дыхании. Сердечная мышца качает кровь по сосудам, а гладкие мышцы работают во внутренних органах и в кровеносных сосудах. Типы мышц различаются по нескольким функциональным характеристикам (А).
В отличие от некоторых типов гладких мышц (однородная гладкомышечная ткань) и сердечных мышечных волокон, которые передают друг другу электрический стимул через щелевые контакты или нексус (А), волокна скелетных мышц стимулируются не соседними мышечными волокнами, а мотонейронами. И действительно, к мышечному параличу приводят именно нарушения иннервации.
Один мотонейрон вместе со всеми мышечными волокнами, которые он иннервирует, называется двигательной единицей (ДЕ). Мышечные волокна, принадлежащие к одной двигательной единице, могут быть распределены по большой площади (см2) поперечного сечения мышцы. Для обеспечения контакта двигательной единицы со всеми мышечными волокнами мотонейрон делится на коллатерали с ответвлениями на концах. Один двигательный нейрон может обслуживать от 25 (мимическая мышца) до более чем 1000 мышечных волокон (височная мышца).
Распределение по типам мышечных волокон зависит от типа мышц. Двигательные единицы медленного (S) типа преобладают в «красных» мышцах (например, в камбаловидной мышце, которая помогает поддерживать тело в вертикальном положении); а двигательные единицы быстрого (F) типа-в «белых» мышцах (икроножная мышца, участвующая в беге). Мышечное волокно одного типа может превращаться в волокно другого типа. Если, к примеру, продолжительная активация быстрых волокон ведет к увеличению концентрации Са 2+ в цитоплазме, то быстрая мышца превращается в медленную и наоборот.
6.2.2 Классификация двигательных единиц
По морфофункциональным свойствам двигательные единицы делятся на 3 типа:
1. Медленные неутомляемые ДЕ. Мотонейроны имеют наиболее низкий порог активации, способны поддерживать устойчивую частоту разрядов в течение десятков минут (т.е. неутомляемы). Аксоны обладают небольшой толщиной, низкой скоростью проведения возбуждения, иннервируют небольшую группу мышечных волокон. Мышечные волокна развивают небольшую силу при сокращении в связи с наличием в них наименьшего количества сократительных белков – миофибрилл. Это так называемые «красные волокна» (цвет обусловлен хорошим развитием капиллярной сети и небольшим количеством миофибрилл). Скорость сокращения этих волокон в 1,5 – 2 раза меньше, чем быстрых. Они неутомляемы благодаря хорошо развитой капиллярной сети, большому количеству митохондрий и высокой активности окислительных ферментов.
2. Быстрые, легко утомляемые ДЕ. Имеют наиболее крупный мотонейрон, обладающий наиболее высоким порогом возбуждения, не способны в течение длительного времени поддерживать устойчивую частоту разрядов (утомляемые). Аксоны толстые, с большой скоростью проведения нервных импульсов, иннервирует много мышечных волокон. Мышечные волокна содержат большое число миофибрилл, поэтому при сокращении развивают большую силу. Благодаря высокой активности ферментов скорость сокращения высокая. Эти волокна быстро утомляются, т.к. содержат меньше, по сравнению с медленными, митохондрий и окружены меньшим количеством капилляров.
3. Быстрые, устойчивые к утомлению. Сильные, быстро сокращающиеся волокна, обладающие большой выносливостью благодаря возможности использования аэробных и анаэробных процессов получения энергии. Волокна 2 и 3 типов называются «белыми волокнами» из-за большого содержания миофибрилл и низкого – миоглобина.
Сравнение медленных и быстрых мышечных волокон
Скелетная мышца человека состоит из волокон 3 типов, однако их соотношение может значительно отличаться в зависимости от функции мышцы, а также врожденной и приобретенной индивидуальности. Чем больше в мышцах белых волокон, тем лучше человек приспособлен к выполнению работы, требующей большой скорости и силы. Преобладание красных волокон обеспечивает выносливость при выполнении длительной работы.
6.2.3 Строение скелетной мышцы
Скелетная мышца состоит из множества мышечных волокон, которые расположены пучками в общем соединительнотканном футляре и крепятся к сухожилиям, связанным со скелетом. Каждое мышечное волокно – это тонкое (от 10 до 100 мкм) вытянутое в длину (от 5 до 400мм) многоядерное образование – симпласт.
Каждая миофибрилла состоит их множества параллельно лежащих толстых (миозиновых) и тонких (актиновых) белковых нитей – миофиламентов. По сечению волокна толстые и тонкие нити располагаются высокоорганизованно в узлах гексагональной решетки. Каждая толстая нить окружена шестью тонкими, каждая из тонких нитей частично входит в окружение трех соседних толстых. Миозиновые нити имеют отходящие от них поперечные выступы с головками, состоящими примерно из 150 молекул миозина. Актиновая нить состоит из двух закрученных одна вокруг другой цепочек (подобно скрученным ниткам бус) молекул актина. На нитях актина расположены молекулы тропонина, а в желобках между двумя нитями актина лежат нити тропомиозина.
Классификация двигательных единиц
По морфофункциональным свойствам двигательные единицы делятся на 3 типа:
1. Медленные неутомляемые ДЕ. Мотонейроны имеют наиболее низкий порог активации, способны поддерживать устойчивую частоту разрядов в течение десятков минут (т.е. неутомляемы). Аксоны обладают небольшой толщиной, низкой скоростью проведения возбуждения, иннервируют небольшую группу мышечных волокон. Мышечные волокна развивают небольшую силу при сокращении в связи с наличием в них наименьшего количества сократительных белков – миофибрилл. Это так называемые «красные волокна» (цвет обусловлен хорошим развитием капиллярной сети и небольшим количеством миофибрилл). Скорость сокращения этих волокон в 1,5 – 2 раза меньше, чем быстрых. Они неутомляемы благодаря хорошо развитой капиллярной сети, большому количеству митохондрий и высокой активности окислительных ферментов.
2. Быстрые, легко утомляемые ДЕ. Имеют наиболее крупный мотонейрон, обладающий наиболее высоким порогом возбуждения, не способны в течение длительного времени поддерживать устойчивую частоту разрядов (утомляемые). Аксоны толстые, с большой скоростью проведения нервных импульсов, иннервирует много мышечных волокон. Мышечные волокна содержат большое число миофибрилл, поэтому при сокращении развивают большую силу. Благодаря высокой активности ферментов скорость сокращения высокая. Эти волокна быстро утомляются, т.к. содержат меньше, по сравнению с медленными, митохондрий и окружены меньшим количеством капилляров.
3. Быстрые, устойчивые к утомлению. Сильные, быстро сокращающиеся волокна, обладающие большой выносливостью благодаря возможности использования аэробных и анаэробных процессов получения энергии. Волокна 2 и 3 типов называются «белыми волокнами» из-за большого содержания миофибрилл и низкого – миоглобина.
Сравнение медленных и быстрых мышечных волокон
Скелетная мышца человека состоит из волокон 3 типов, однако их соотношение может значительно отличаться в зависимости от функции мышцы, а также врожденной и приобретенной индивидуальности. Чем больше в мышцах белых волокон, тем лучше человек приспособлен к выполнению работы, требующей большой скорости и силы. Преобладание красных волокон обеспечивает выносливость при выполнении длительной работы.
Строение скелетной мышцы
Скелетная мышца состоит из множества мышечных волокон, которые расположены пучками в общем соединительнотканном футляре и крепятся к сухожилиям, связанным со скелетом. Каждое мышечное волокно – это тонкое (от 10 до 100 мкм) вытянутое в длину (от 5 до 400мм) многоядерное образование – симпласт.
Каждая миофибрилла состоит их множества параллельно лежащих толстых (миозиновых) и тонких (актиновых) белковых нитей – миофиламентов. По сечению волокна толстые и тонкие нити располагаются высокоорганизованно в узлах гексагональной решетки. Каждая толстая нить окружена шестью тонкими, каждая из тонких нитей частично входит в окружение трех соседних толстых. Миозиновые нити имеют отходящие от них поперечные выступы с головками, состоящими примерно из 150 молекул миозина. Актиновая нить состоит из двух закрученных одна вокруг другой цепочек (подобно скрученным ниткам бус) молекул актина. На нитях актина расположены молекулы тропонина, а в желобках между двумя нитями актина лежат нити тропомиозина.
Механизм сокращения мышечного волокна
В 1954 г. Г.Хаксли и Н.Хэнсон обнаружили, что актиновые и миозиновые филаменты не изменяют своей длины при укорочении или удлинении саркомера и вывели теорию скольжения нитей: мышечное сокращение происходит при последовательном связывании нескольких центров миозиновой головки поперечного мостика с определенными участками на актиновых филаментах.
В покоящихся мышечных волокнах молекулы тропомиозина в покое располагаются так, что предотвращают прикрепление поперечных мостиков миозина к актиновым нитям (мышца расслаблена).
Возникающий в области аксо-соматического синапса ПД распространяется по системе Т-трубочек вглубь волокна, вызывая деполяризацию цистерн саркоплазматического ретикулума (депо Са 2+ ). При активации мембраны СР происходит открытие Са-каналов и выход Са 2+ по концентрационному градиенту.
При повышении в миоплазме концентрации ионов Са 2+ он соединяется с тропонином, последний конформируется и отодвигает нить тропомиозина, открывая для миозиновой головки возможность соединения с актином. Соединение головки приводит к резкому «сгибанию» мостика и перемещению нити актина на 1 шаг (20 нм или 1% длины актина) к середине саркомера с последующим разрывом мостика.
При отсутствии повторного возбуждения концентрация Са 2+ благодаря работе Са-насоса падает. Поэтому Са 2+ отсоединяется от тропонина и тропомиозин снова блокирует актин. При этом на одно рабочее движение одного мостика тратится энергия 1 молекулы АТФ, еще одной – на возврат 2 ионов Са 2+ в цистерны.
Все это приводит к расслаблению мышцы вплоть до момента прихода очередного потока нервных импульсов, когда описанный выше процесс повторяется.
Совокупность процессов, обуславливающих распределение ПД вглубь мышечного волокна, выход ионов Са 2+ из саркоплазматического ретикулума, взаимодействие сократительных белков и укорочение мышечного волокна называется электромеханическим сопряжением.
Механика мышцы. Физические свойства и режимы мышечных сокращений
Физические свойства скелетных мышц
1. Растяжимость— способность мышцы изменять свою длину под действием растягивающей ее силы.
4. Способность мышцы совершать работу. Работа мышцы определяется произведением величины поднятого груза на высоту подъема. Работа мышцы постепенно увеличивается с увеличением груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, т. к. снижается высота подъема груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок (закон средних нагрузок).
Режимы мышечных сокращений
Различают изотонический, изометрический и смешанный режимы сокращения мышц.
При изотоническом сокращении мышцы происходит изменение ее длины, а напряжение остается постоянным. Такое сокращение происходит в том случае, когда мышца не перемещает груз. В естественных условиях близкими к изотоническому типу сокращений являются сокращения мышц языка.
При изометрическомсокращении длина мышечных волокон остается постоянной, меняется напряжение мышцы. Такое сокращение мышцы можно получить при попытке поднять непосильный груз.
В целом организме сокращения мышц никогда не бывают чисто изотоническим или изометрическим, они всегда имеют смешанный характер, т. е. происходит изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим если преобладает напряжение мышцы, или ауксометрическим если преобладает укорочение.
Двигательная единица мыщцы
Способность двигаться. Типы мышц [ править | править код ]
Мышцы состоят из клеток (волокон), которые сокращаются при стимуляции. Скелетная мускулатура отвечает за передвижение тела, изменение позы и за движение газов при дыхании. Сердечная мышца качает кровь по сосудам, а гладкие мышцы работают во внутренних органах и в кровеносных сосудах. Типы мышц различаются по нескольким функциональным характеристикам (А).
Двигательная единица скелетной мышцы [ править | править код ]
В отличие от некоторых типов гладких мышц (однородная гладкомышечная ткань) и сердечных мышечных волокон, которые передают друг другу электрический стимул через щелевые контакты или нексус (А), волокна скелетных мышц стимулируются не соседними мышечными волокнами, а мотонейронами. И действительно, к мышечному параличу приводят именно нарушения иннервации.
Один мотонейрон вместе со всеми мышечными волокнами, которые он иннервирует, называется двигательной единицей (ДЕ). Мышечные волокна, принадлежащие к одной двигательной единице, могут быть распределены по большой площади (см2) поперечного сечения мышцы. Для обеспечения контакта двигательной единицы со всеми мышечными волокнами мотонейрон делится на коллатерали с ответвлениями на концах. Один двигательный нейрон может обслуживать от 25 (мимическая мышца) до более чем 1000 мышечных волокон (височная мышца).
Распределение по типам мышечных волокон зависит от типа мышц. Двигательные единицы медленного (S) типа преобладают в «красных» мышцах (например, в камбаловидной мышце, которая помогает поддерживать тело в вертикальном положении); а двигательные единицы быстрого (F) типа-в «белых» мышцах (икроножная мышца, участвующая в беге). Мышечное волокно одного типа может превращаться в волокно другого типа. Если, к примеру, продолжительная активация быстрых волокон ведет к увеличению концентрации Са 2+ в цитоплазме, то быстрая мышца превращается в медленную и наоборот.