какие две силы считаются в механике равными

Учебники

Журнал «Квант»

Общие

Понятие «Сила»

В инерциальных системах отсчета любое изменение скорости тела происходит под действием других тел. Описывая действие одного тела на другое, мы часто говорим о слабом, сильном или очень сильном действии. Но значение слов «сильный удар», «слабый удар», например, при описании действия клюшки хоккеиста на шайбу совершенно не определено, пока нет количественной меры действия одного тела на другое.

В физике для количественного выражения действия одного тела на другое вводится понятие «сила».

Если учесть, что в результате действия других тел скорость тела меняется, то можно дать и другое определение силы

это количественная мера действия тел друг на друга, в результате которого тела получают ускорения.

Если к концу пружины прикрепить тележку и растянуть пружину, то под действием пружины тележка движется ускоренно. Следовательно, со стороны растянутой пружины на тележку действует сила. Эту силу называют силой упругости. Сила упругости зависит только от того, как растянута пружина, но не зависит от того, к какому телу она прикреплена. Другой пример силы – сила тяжести, действующая на любое тело у поверхности Земли.

Нужно отчетливо представлять себе, что понятие силы относится к двум телам, а не к одному и не ко многим. Всегда можно указать тело, на которое действует сила, и тело, со стороны которого она действует. Так, сила тяжести действует на камень со стороны Земли, а на шарик, прикрепленный к растянутой пружине, действует сила упругости со стороны пружины.

Сила упругости растянутой пружины действует вдоль ее оси. Вы сами можете подействовать на лежащую на столе книгу мускульной силой в любом направлении. Это дает основание предположить, что сила является векторной величиной (т.е. характеризуется модулем и направлением).

Сила – величина векторная, ее обозначают буквой \(\vec F\).

За направление вектора силы принимается направление вектора ускорения тела, на которое действует сила.

В Международной системе единиц за единицу силы принимается сила, которая телу массой 1 кг сообщает ускорение 1 м/с². Эта единица называется ньютоном (Н), т.е.

Для количественного определения силы мы должны уметь ее измерять. Только после этого можно говорить о силе как об определенной физической величине. Когда человек не может поднять тяжелую вещь, он говорит: «Не хватает сил». При этом, в сущности, происходит сравнение двух совершенно разных по природе сил: мускульной силы и силы, с которой Земля притягивает этот предмет. Но если вы подняли тяжелый предмет и держите его на весу, то ничто не мешает вам утверждать, что мускульная сила ваших рук по модулю равна силе тяжести. Это утверждение, по существу, и является определением равенства сил в механике.

Две силы, независимо от их природы, считаются равными по модулю и противоположно направленными, если их одновременное действие на тело не меняет его скорость (т.е. не сообщает телу ускорения).

Это определение позволяет измерять силы, если одну из них принять за единицу. Для измерения сил надо располагать эталоном единицы силы.

В качестве эталона единицы силы выберем силу \(\vec F_0\), с которой некоторая определенная (эталонная) пружина при фиксированном растяжении действует на прикрепленное к ней тело (рис. 1). Сила упругости пружины направлена вдоль оси пружины. (Необязательно брать именно пружину; можно использовать любое упругое тело, деформацию которого легко измерить.)

Теперь установим способ сравнения сил с эталонной силой. Измеряемая сила \(\vec F\) равна по модулю эталонной силе \(\vec F_0\) и направлена в противоположную сторону, если под действием этих сил тело не получает ускорения (рис. 2). Причем сила F может быть любой природы: силой упругости другой пружины, силой трения, мускульной силой и т.д.

При действии по одному направлению двух сил \(\vec F_0\) (рис. 3) будем считать, что измеряемая сила \(\vec F\), направленная в противоположную сторону, по модулю равна \(2 \vec F_0\), если все три силы, действуя одновременно на тело, не сообщают ему ускорения.

Таким образом, располагая эталоном силы, можно измерять силы, кратные эталону. Процедура измерения состоит в следующем: к телу, на которое действует измеряемая сила, прикладывают в сторону, противоположную ее направлению, такое количество эталонных сил, чтобы тело не получило ускорения, и подсчитывают число эталонных сил. Естественно, что при этом ошибка в измерении произвольной силы будет такой же, как сама эталонная сила \(\vec F_0\). Выбрав эталонную силу достаточно малой, можно в принципе проводить измерения с требуемой точностью.

На практике нет необходимости все измеряемые силы сравнивать с эталоном. Для измерения сил используют проградуированную на различные значения силы пружины (рис. 4). Такие откалиброванные пружины называются динамометрами. Использование динамометра основано на том факте, что сила упругости пружины в определенных пределах прямо пропорциональна ее деформации. Поэтому по длине растянутой пружины можно непосредственно судить о значении силы.

Располагая методом измерения сил, можно опытным путем доказать, что силы складываются, как векторы. Именно это дает основание считать силу, подобно скорости и ускорению, векторной величиной.

При одновременном действии на одно тело нескольких тел тело движется с ускорением, являющимся векторной суммой ускорений, которые возникли бы под действием каждого тела в отдельности. Действующие на тело силы, приложенные к одной точке тела, складываются по правилу сложения векторов (см. Сложение векторов).

Векторная сумма всех одновременно действующих на тело сил называется равнодействующей:

\(\vec F = \vec F_1 + \vec F_2 + \vec F_3 + \ldots\)

В механике важно знать, при каких условиях возникают силы и каковы их модули и направления, т. е. знать, как силы зависят от расстояний между телами и от скоростей их движения. А узнать значения сил, определить, когда и как они действуют, можно, не вникая в природу сил, а лишь располагая способами их измерения.

В механике в первую очередь имеют дело с тремя видами сил: гравитационными силами, силами упругости и силами трения. Модули и направления этих сил определяются опытным путем. Важно, что все рассматриваемые в механике силы зависят либо только от расстояний между телами или частями одного тела (гравитация и упругость), либо только от относительных скоростей тел (трение).

Связь между ускорением и силой

Установить на опыте связь между ускорением и силой с абсолютной точностью нельзя, так как любое измерение дает приблизительное значение измеряемой величины. Но подметить характер зависимости ускорения от силы можно с помощью несложных опытов. Уже простые наблюдения показывают, что чем больше сила, тем быстрее меняется скорость тела, т. е. тем больше его ускорение. Естественно предположить, что ускорение прямо пропорционально силе. В принципе, конечно, зависимость ускорения от силы может быть более сложной, но сначала надо посмотреть, не справедливо ли самое простое предположение.

Лучше всего изучать поступательное движение тела, например металлического бруска, по горизонтальной поверхности стола, так как только при поступательном движении ускорение всех точек одно и то же, и мы можем говорить об определенном ускорении тела в целом. Однако в этом случае сила трения о стол велика и, главное, ее трудно точно измерить (лучше использовать движение бруска на воздушной подушке). Поэтому возьмем тележку с легкими колесами и установим ее на рельсы. Тогда сила трения сравнительно невелика, а массой колес можно пренебречь по сравнению с массой тележки, движущейся поступательно (рис. 5).

Пусть на тележку действует постоянная сила со стороны нити, к концу которой прикреплен груз. Модуль силы измеряется пружинным динамометром. Эта сила постоянна, но не равна при движении силе, с которой Земля притягивает подвешенный груз. Измерить ускорение тележки непосредственно, определяя изменение ее скорости за малый интервал времени, весьма затруднительно. Но его можно оценить, измеряя время t, затрачиваемое тележкой на прохождение пути s.

Непосредственно на глаз видно, что тележка тем быстрее набирает скорость, чем больше действующая на нее сила. Тщательные измерения модулей силы и ускорения показывают прямую пропорциональность между ними:

Если на тело одновременно действует несколько сил, то модуль ускорения тела будет пропорционален модулю геометрической суммы всех этих сил, равной:

\(\vec F = \vec F_1 + \vec F_2 + \ldots \qquad (2)\)

Векторы \( \vec a \) и \( \vec F\) направлены по одной прямой в одну и ту же сторону:

\(\vec a \sim \vec F \qquad (3)\)

Это видно на опыте с тележкой: ускорение тележки направлено вдоль привязанной к ней нити.

Масса

От чего зависит ускорение тел? Каждый без труда за несколько секунд разгонит легкую байдарку до большой скорости, но сделать то же самое с тяжело нагруженной лодкой он будет не в состоянии. Еще пример. Стоит отпустить тетиву лука, как легкая стрела в доли секунды разовьет большую скорость. А попробуйте вместо стрелы взять кусок водопроводной трубы. Тот же лук сможет лишь едва-едва сдвинуть его с места.

Эти примеры говорят о том, что модуль ускорения тела зависит не только от оказываемого на него воздействия (т.е. от силы), но и от свойств тела.

Отсюда следует, что необходимо ввести величину, которая характеризовала бы способность того или иного тела менять свою скорость под влиянием определенной силы. Чем меньше изменяется скорость тела при взаимодействии с другими телами, тем ближе его движение к равномерному прямолинейному движению по инерции. Такое тело называют более инертным. Свойством инертности обладают все тела. Оно состоит в том, что для изменения скорости тела при взаимодействии его с любыми другими телами требуется некоторое время.

Свойство тела, от которого зависит его ускорение при взаимодействии с другими телами, называется инертностью.

Количественной мерой инертности тела является масса тела.

Можно ввести и другое определение массы.

Чем большей массой обладает тело, тем меньшее ускорение оно получает при взаимодействии. Прямая пропорциональность между модулями ускорения и силы (3) означает, что отношение модуля силы к модулю ускорения является постоянной величиной, не зависящей от силы:

Нагружая тележку гирями (см. рис. 5), легко заметить, что чем больше гирь на ней находится, тем медленнее она будет набирать скорость, т. е. тем меньше ее ускорение. Поэтому для нагруженной тележки отношение \(\frac\) больше, чем для ненагруженной. Это как раз и означает, что ускорение зависит не только от силы, но и от свойств самого тела.

Природу массы пока не понимает никто. Никто не может объяснить, по-чему элементарные частицы имеют те или иные массы. Но приведенное определение массы позволяет ее измерить, а по известной массе точнейшим образом рассчитывать движения тел. А это и есть основная задача механики.

За единицу массы в Международной системе принята масса специального эталона, изготовленного из сплава платины и иридия. Масса этого эталона называется килограммом (кг).

Источник

§ 19. Сила. Масса. Единица массы

Что является причиной изменения скорости тел?

Что можно сказать о скорости и ускорении тела, к которому не приложена никакая сила?

Основное утверждение механики состоит в том, что ускорения тел определяются действиями на них других тел.

Запомни
Силой в механике называют количественную меру действия тел друг на друга, в результате которого тела получают ускорения или испытывают деформацию.

Это определение основано на главном утверждении механики:

1) ускорения тел вызываются силами;

2) силы, действующие на тело, обусловлены действиями на него других тел.

Важно
Сила — мера взаимодействия тел.

какие две силы считаются в механике равными. Смотреть фото какие две силы считаются в механике равными. Смотреть картинку какие две силы считаются в механике равными. Картинка про какие две силы считаются в механике равными. Фото какие две силы считаются в механике равнымиС какими телами взаимодействует ребёнок, катающийся на карусели?

Понятие силы относится к двум телам. С самого начала нужно отчётливо представить себе, что понятие силы относится именно к двум телам, а не к одному. Всегда можно указать тело, на которое действует сила, и тело, со стороны которого она действует. Так, сила тяжести действует на камень со стороны Земли, а на шарик, подвешенный на пружине, действует сила упругости со стороны пружины.

Сила имеет направление. Так, сила упругости растянутой пружины действует вдоль её оси. Сила трения останавливает скользящую по льду шайбу и направлена против скорости её движения.

Важно
Сила — векторная величина.

Сравнение сил. Для количественного определения силы мы должны уметь её измерять. Только при этом условии можно говорить о силе как об определённой физической величине. Но ведь действия на данное тело могут быть самыми разнообразными. Что общего, казалось бы, между силой притяжения Земли к Солнцу и силой, которая, преодолевая тяготение, заставляет взмывать вверх ракету, или между этими двумя силами и силой, сжимающей мяч в руке, определяемой сокращением мускул? Ведь они совершенно различны по своей природе! Можно ли говорить о них как о чём-то физически родственном? Можно ли сравнивать их?

Важно
Две силы независимо от их природы считаются равными и противоположно направленными, если их одновременное действие на тело не меняет его скорости (т. е. не сообщает телу ускорение).

Это определение позволяет измерять силы, если одну из них принять за единицу измерения.

Измерение сил. Для измерения сил необходим эталон единицы силы. В качестве эталона единицы силы выберем силу какие две силы считаются в механике равными. Смотреть фото какие две силы считаются в механике равными. Смотреть картинку какие две силы считаются в механике равными. Картинка про какие две силы считаются в механике равными. Фото какие две силы считаются в механике равными0, с которой некоторая определённая (эталонная) пружина при фиксированном растяжении Δх действует на прикреплённое к ней тело (рис. 2.1). Сила упругости пружины направлена вдоль оси пружины.

Установим способ сравнения сил с эталонной силой.

какие две силы считаются в механике равными. Смотреть фото какие две силы считаются в механике равными. Смотреть картинку какие две силы считаются в механике равными. Картинка про какие две силы считаются в механике равными. Фото какие две силы считаются в механике равными

По определению две силы считаются равными и противоположными по направлению, если при одновременном действии они не сообщают телу ускорение. Следовательно, измеряемая сила какие две силы считаются в механике равными. Смотреть фото какие две силы считаются в механике равными. Смотреть картинку какие две силы считаются в механике равными. Картинка про какие две силы считаются в механике равными. Фото какие две силы считаются в механике равными1 равна по модулю эталонной силе какие две силы считаются в механике равными. Смотреть фото какие две силы считаются в механике равными. Смотреть картинку какие две силы считаются в механике равными. Картинка про какие две силы считаются в механике равными. Фото какие две силы считаются в механике равными0 и направлена в противоположную сторону, если под воздействием этих сил тело не получает ускорение (см. рис. 2.1). Причём сила какие две силы считаются в механике равными. Смотреть фото какие две силы считаются в механике равными. Смотреть картинку какие две силы считаются в механике равными. Картинка про какие две силы считаются в механике равными. Фото какие две силы считаются в механике равными1 может быть любой природы: силой давления, силой трения и т. д.

Таким образом, располагая эталоном силы, мы можем измерять силы, кратные эталону. Для этого к телу, на которое действует измеряемая сила, прикладывают в сторону, противоположную её направлению, такое количество эталонных сил, чтобы тело не получило ускорение, и подсчитывают число эталонных сил. Естественно, что при этом мы можем измерить силу не меньше эталонной силы какие две силы считаются в механике равными. Смотреть фото какие две силы считаются в механике равными. Смотреть картинку какие две силы считаются в механике равными. Картинка про какие две силы считаются в механике равными. Фото какие две силы считаются в механике равными0 и ошибка измерения будет также не меньше ошибки измерения эталонной силы.

Выбрав эталонную силу достаточно малой, можно в принципе производить измерения разных сил с требуемой точностью.

какие две силы считаются в механике равными. Смотреть фото какие две силы считаются в механике равными. Смотреть картинку какие две силы считаются в механике равными. Картинка про какие две силы считаются в механике равными. Фото какие две силы считаются в механике равнымиМожно ли при задании эталонной силы не растягивать, а сжимать пружину?

какие две силы считаются в механике равными. Смотреть фото какие две силы считаются в механике равными. Смотреть картинку какие две силы считаются в механике равными. Картинка про какие две силы считаются в механике равными. Фото какие две силы считаются в механике равными

Динамометр. На практике для измерения сил применяют динамометр (рис. 2.3). Использование динамометра основано на том, что при упругой деформации удлинение пружины прямо пропорционально приложенной к ней силе. Поэтому по длине пружины можно судить о значении силы.

О силах в механике. В механике не рассматривается природа тех или иных сил и не делаются попытки выяснить, вследствие каких физических процессов появляются те или иные силы. Это задача других разделов физики.

В механике важно лишь знать, при каких условиях возникают силы, каковы их направления и чему равны их модули, т. е. знать, как силы зависят от расстояний между телами и от скоростей их движения. А знать модули сил, определять, когда и как они действуют, можно, не вникая в природу сил, а лишь располагая способами их измерения.

В механике имеют дело с тремя типами сил: гравитационными силами, силами упругости и силами трения. Модули и направления этих сил определяются опытным путём. Важно, что все рассматриваемые в механике силы зависят либо только от расстояний между телами или от расположения частей тела (гравитация и упругость), либо только от относительных скоростей тел (трение).

какие две силы считаются в механике равными. Смотреть фото какие две силы считаются в механике равными. Смотреть картинку какие две силы считаются в механике равными. Картинка про какие две силы считаются в механике равными. Фото какие две силы считаются в механике равнымиКогда человек не может поднять тяжёлую вещь, он говорит: «Не хватает сил». При этом, в сущности, происходит сравнение двух совершенно разных по своей природе сил — мускульной силы и силы, с которой Земля притягивает этот предмет. Но если вы подняли тяжёлый предмет и держите его на весу, то ничто не мешает вам утверждать, что сила, действующая на тело со стороны ваших рук, по модулю равна силе тяжести. Это утверждение, по существу, и является определением равенства сил в механике.

Инертность тела. Мы уже говорили о явлении инерции. Именно вследствие инерции покоящееся тело приобретает заметную скорость под действием силы не сразу, а лишь за некоторый интервал времени.

Запомни
Инертность — свойство тел по-разному изменять свою скорость под действием одной и той же силы.

Ускорение возникает сразу, одновременно с началом действия силы, но скорость нарастает постепенно. Даже очень большая сила не в состоянии сообщить телу сразу значительную скорость. Для этого нужно время. Чтобы остановить тело, опять-таки нужно, чтобы тормозящая сила, как бы она ни была велика, действовала некоторое время.

Именно эти факты имеют в виду, когда говорят, что тела инертны, т. е. одним из свойств тела является инертность, а количественной мерой инертности является масса.

какие две силы считаются в механике равными. Смотреть фото какие две силы считаются в механике равными. Смотреть картинку какие две силы считаются в механике равными. Картинка про какие две силы считаются в механике равными. Фото какие две силы считаются в механике равными

Приведём примеры простых опытов, в которых очень отчётливо проявляется инертность тел.

1. На рисунке 2.4 изображён массивный шар, подвешенный на тонкой нити. Внизу к шару привязана точно такая же нить.

Если медленно тянуть за нижнюю нить, то порвётся верхняя нить: ведь на неё действуют и шар своей тяжестью, и сила, с которой мы тянем шар вниз. Однако если за нижнюю нить очень быстро дёрнуть, то оборвётся именно она, что на первый взгляд довольно странно.

Но это легко объяснить. Когда мы тянем за нить медленно, то шар постепенно опускается, растягивая верхнюю нить до тех пор, пока она не оборвётся. При быстром рывке с большой силой шар получает большое ускорение, но скорость его не успевает увеличиться сколько-нибудь значительно за тот малый промежуток времени, в течение которого нижняя нить сильно растягивается и обрывается. Верхняя нить поэтому мало растягивается и остаётся целой.

какие две силы считаются в механике равными. Смотреть фото какие две силы считаются в механике равными. Смотреть картинку какие две силы считаются в механике равными. Картинка про какие две силы считаются в механике равными. Фото какие две силы считаются в механике равнымиВыполните самостоятельно этот опыт и убедитесь в описанных результатах.

какие две силы считаются в механике равными. Смотреть фото какие две силы считаются в механике равными. Смотреть картинку какие две силы считаются в механике равными. Картинка про какие две силы считаются в механике равными. Фото какие две силы считаются в механике равнымиОбъясните описанный опыт с палкой.

какие две силы считаются в механике равными. Смотреть фото какие две силы считаются в механике равными. Смотреть картинку какие две силы считаются в механике равными. Картинка про какие две силы считаются в механике равными. Фото какие две силы считаются в механике равными

2. Интересен опыт с длинной палкой, подвешенной на бумажных кольцах (рис. 2.5). Если резко ударить по палке железным стержнем, то палка ломается, а бумажные кольца остаются невредимыми.

3. Наконец, самый, пожалуй, эффектный опыт. Если выстрелить в пустой пластмассовый сосуд, пуля оставит в стенках правильные отверстия, но сосуд останется целым. Если же выстрелить в такой же сосуд, заполненный водой, то сосуд разорвётся на мелкие части. Это объясняется тем, что вода малосжимаема и небольшое изменение её объёма приводит к резкому возрастанию давления. Когда пуля очень быстро входит в воду, пробив стенку сосуда, давление резко возрастает. Из-за инертности воды её уровень не успевает повыситься, и возросшее давление разрывает сосуд на части.

Чем больше масса тела, тем больше его инертность, тем сложнее вывести тело из первоначального состояния, т. е. заставить его двигаться или, наоборот, остановить его движение.

какие две силы считаются в механике равными. Смотреть фото какие две силы считаются в механике равными. Смотреть картинку какие две силы считаются в механике равными. Картинка про какие две силы считаются в механике равными. Фото какие две силы считаются в механике равнымиПонаблюдайте за различными телами и определите, как зависит инертность тела от его массы.

Единица массы. В кинематике мы пользовались двумя основными физическими величинами — длиной и временем. Для единиц этих величин установлены соответствующие эталоны, сравнением с которыми определяются любая длина и любой интервал времени. Единицей длины является метр, а единицей времени — секунда. Все другие кинематические величины не имеют эталонов единиц. Единицы таких величин называются производными.

При переходе к динамике мы должны ввести ещё одну основную единицу и установить её эталон.

какие две силы считаются в механике равными. Смотреть фото какие две силы считаются в механике равными. Смотреть картинку какие две силы считаются в механике равными. Картинка про какие две силы считаются в механике равными. Фото какие две силы считаются в механике равнымиПриведите примеры производных единиц физических величин в кинематике.

В Международной системе единиц (СИ) за единицу массы — один килограмм (1 кг) — принята масса эталонной гири из сплава платины и иридия, которая хранится в Международном бюро мер и весов в Севре, близ Парижа. Точные копии этой гири имеются во всех странах. Приближённо массу 1 кг имеет вода объёмом 1 л при комнатной температуре. Легко осуществимые способы сравнения любой массы с массой эталона путём взвешивания мы рассмотрим позднее.

Ключевые слова для поиска информации по теме параграфа.
Инертность. Масса. Сила. Динамометр

Вопросы к параграфу

1. При каких условиях тело движется с постоянной скоростью?

2. Дайте определение силы.

3. Какие две силы считаются в механике равными?

4. Как складываются силы, действующие на тело?

5. Чем отличаются основные единицы физических величин от производных единиц?

Источник

Тема1.3. Пара сил и момент силы

§1. Момент силы относительно центра (или точки)

Опыт показывает, что под действием силы твердое тело может наряду с поступательным перемещением совершать вращение вокруг того или иного центра. Вращательный эффект силы характеризуется ее момен­том.

, на­зывается плечом силы от­носительно центра О. Так как точку приложения силы можно произвольно переме­щать вдоль линии действия, то, очевидно, вращательный эффект силы будет зависеть:

1) от модуля силы F и длины плеча h;

2) от поло­жения плоскости поворота ОАВ, проходящей через центр О и силу F;

3) от направления поворота к этой плоскости.

Рис.1. Сила, приложенная к телу

Ограничимся пока рассмотрением систем сил, лежащих в одной плоскости. В этом случае плоскость поворота для всех сил является общей и в дополнительном задании не нуждается.

Тогда для количественного измерения вращательного эффекта можно ввести следующее понятие о моменте силы: моментом силы относительно центра О называется величина, равная взятому с соответствующим знаком произведению модуля силы на длину плеча.

Момент силы относительно центра О будем обозначать M.

Следовательно, М= ±Fh. Единицы измерения в системе СИ : Н·м,

Правило знаков для момента силы: момент пары сил будем считать положительным, если пара стремиться повернуть тело по направлению хода часовой стрелки, и отрицательным, если пара сил стремится вращать тело против хода часовой стрелки.

Отметим следующие свойства момента силы:

1) Момент силы не изменяется при переносе точки приложения силы вдоль ее линии действия.

2) Момент силы относительно центра О равен нулю только тогда, когда сила равна нулю или когда линия действия силы проходит через центр О (плечо равно нулю).

3) Момент силы численно выражается удвоенной площадью тре­угольника ОАВ (рис. 1)

§2.Теорема Вариньона о моменте равнодействующей

Докажем следующую теорему Вариньона: момент равнодействующей плоской системы сходящихся сил от­носительно любого центра равен алгеб­раической сумме моментов слагаемых сил относительно того же центра.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *