какие два типа проводящих тканей выделяют у высших растений в чем особенность их
Какие два типа проводящих тканей выделяют у высших растений в чем особенность их
Ткани возникли у высших растений в связи с выходом на сушу и наибольшей специализации достигли упокрытосеменных, у которых их выделяют до 80 видов. Важнейшие ткани растений:
Ткани могут быть простыми и сложными. Простые ткани состоят из одного вида клеток (например, колленхима, меристема), а сложные — из различных по строению клеток, выполняющих кроме основных и дополнительные функции (эпидерма, ксилема, флоэма и др.).
Клетки образовательной ткани тонкостенные, многогранные, плотно сомкнутые, с густой цитоплазмой, с крупным ядром и очень мелкими вакуолями. Они способны делиться в разных направлениях.
По происхождению меристемы бывают первичные и вторичные. Первичная меристема составляет зародыш семени, а у взрослого растения сохраняется на кончике корней и верхушках побегов, что делает возможным их нарастание в длину. Дальнейшее разрастание корня и стебля по диаметру (вторичный рост) обеспечивается вторичными меристемами — камбием и феллоге-ном. По расположению в теле растения различают верхушечные (апикальные), боковые (латеральные), вставочные (интеркаляр-ные) и раневые (травматические) меристемы.
Покровные ткани располагаются на поверхности всех органов растения. Они выполняют главным образом защитную функцию — защищают растения от механических повреждений, проникновения микроорганизмов, резких колебаний температуры, излишнего испарения и т. п. В зависимости от происхождения различают три группы покровных тканей —эпидермис, перидерму и корку.
Эпидермис (эпидерма, кожица) — первичная покровная ткань, расположенная на поверхности листьев и молодых зеленых побегов (рис. 8.1). Она состоит из одного слоя живых, плотно сомкнутых клеток, не имеющих хлоропластов. Оболочки клеток обычно извилистые, что обусловливает их прочное смыкание. Наружная поверхность клеток этой ткани часто одета кутикулой или восковым налетом, что является дополнительным защитным приспособлением. В эпидерме листьев и зеленых стеблей имеются устьица, которые регулируют транспирацию и газообмен растения.
Перидерма — вторичная покровная ткань стеблей и корней, сменяющая эпидермис у многолетних (реже однолетних) растений (рис. 8.2.). Ее образование связано с деятельностью вторичной меристемы —феллогена (пробкового камбия), клетки которого делятся и дифференцируются в центробежном направлении (наружу) в пробку (феллему), а в центростремительном, (внутрь) — в слой живых паренхимных клеток (феллодерму). Пробка, феллоген и феллодерма составляют перидерму.
Рис. 8.1. Эпидерма листа различных растений: а— хлорофитум; 6 — плющ обыкновенный: в — герань душистая; г — шелковица белая; 1— клетки эпидермы; 2 — замыкающие клетки устьиц; 3 — устьичная щель.
Рис 8.2. Перидерма стебля бузины (а — поперечный разрез побега, б — чечевички): I— выполняющая ткань; 2 — остатки эпидермы; 3 — пробка (феллема); 4 — феллоген; 5 — феллодерма.
Клетки пробки пропитаны жироподобным веществом — суберином —и не пропускают воду и воздух, поэтому содержимое клетки отмирает и она заполняется воздухом. Многослойная пробка образует своеобразный чехол стебля, надежно предохраняющий растение от неблагоприятных воздействий окружающей среды. Для газообмена и транспирации живых тканей, лежащих под пробкой, в последней имеются особые образования — чечевички; это разрывы в пробке, заполненные рыхло расположенными клетками.
Корка образуется у деревьев и кустарников на смену пробке. В более глубоко лежащих тканях коры закладываются новые участки феллогена, формирующие новые слои пробки. Вследствие этого наружные ткани изолируются от центральной части стебля, деформируются и отмирают, На поверхности стебля постепенно образуется комплекс мертвых тканей, состоящий из нескольких слоев пробки и отмерших участков коры. Толстая корка служит более надежной защитой для растения, чем пробка.
Проводящие ткани обеспечивают передвижение воды и растворенных в ней питательных веществ по растению. Различают два вида проводящей ткани — ксилему (древесину) и флоэму (луб).
Ксилема —это главная водопроводящая ткань высших сосудистых растений, обеспечивающая передвижение воды с растворенными в ней минеральными веществами от корней к листьям и другим частям растения (восходящий ток). Она также выполняет опорную функцию. В состав ксилемы входят трахеиды и трахеи (сосуды) (рис. 8.3), древесинная паренхима и механическая ткань.
Трахеиды представляют собой узкие, сильно вытянутые в длину мертвые клетки с заостренными концами и одревесневшими оболочками. Проникновение растворов из одной трахеиды в другую происходит путем фильтрации через поры — углубления, затянутые мембраной. Жидкость по трахеидам протекает медленно, так как поровая мембрана препятствует движению воды. Трахеиды встречаются у всех высших растений, а у большинства хвощей, плаунов, папоротников и голосеменных служат единственным проводящим элементом ксилемы. У покрытосеменных растений наряду с трахеидами имеются сосуды.
Рис 8.3. Элементы ксилемы (а) и флоэмы (6): 1—5 — кольчатая, спиральная, лестничная и пористая (4, 5) трахеи соответственно; 6 — коль чатая и пористая трахеиды; 7 — ситовидная трубка с клеткой-спутницей.
Трахеи (сосуды) —это полые трубки, состоящие из отдельных члеников, расположенных друг над другом. В члениках на поперечных стенках образуются сквозные отверстия — перфорации, или эти стенки полностью разрушаются, благодаря чему скорость тока растворов по сосудам многократно увеличивается. Оболочки сосудов пропитываются лигнином и придают стеблю дополнительную прочность. В зависимости от характера утолщения оболочек различают трахеи кольчатые, спиральные, лестничные и др. (см. рис. 8.3).
Флоэма проводит органические вещества, синтезированные в листьях, ко всем органам растения (нисходящий ток). Как и ксилема, она является сложной тканью и состоит из ситовидных трубок с клетками-спутницами (см. рис. 8.3), паренхимы и механической ткани. Ситовидные трубки образованы живыми клетками, расположенными одна над другой. Их поперечные стенки пронизаны мелкими отверстиями, образующими как бы сито. Клетки ситовидных трубок лишены ядер, но содержат в центральной части цитоплазму, тяжи которой через сквозные отверстия в поперечных перегородках проходят в соседние клетки. Ситовидные трубки, как и сосуды, тянутся по всей длине растения. Клетки-спутницы соединены с члениками ситовидных трубок многочисленными плазмодесмами и, по-видимому, выполняют часть функций, утраченных ситовидными трубками (синтез ферментов, образование АТФ).
Ксилема и флоэма находятся в тесном взаимодействии друг с другом и образуют в органах растения особые комплексные группы — проводящие пучки.
Механические ткани обеспечивают прочность органов растений. Они составляют каркас, поддерживающий все органы растений, противодействуя их излому, сжатию, разрыву. Основными характеристиками строения механических тканей, обеспечивающими их прочность и упругость, являются мощное утолщение и одревеснение их оболочек, тесное смыкание между клетками, отсутствие перфораций в клеточных стенках.
Механические ткани наиболее развиты в стебле, где они представлены лубяными и древесинными волокнами. В корнях механическая ткань сосредоточена в центре органа.
В зависимости от формы клеток, их строения, физиологического состояния и способа утолщения клеточных оболочек различают два вида механической ткани: колленхиму и склеренхиму, (рис. 8.4).
Колленхима представлена живыми паренхимными клетками с неравномерно утолщенными оболочками, делающими их особенно хорошо приспособленными для укрепления молодых растущих органов. Будучи первичными, клетки колленхимы легко растягиваются и практически не мешают удлинению той части растения, в которой находятся. Обычно колленхима располагается отдельными тяжами или непрерывным цилиндром под эпидермой молодого стебля и черешков листьев, а также окаймляет жилки в листьях двудольных. Иногда колленхима содержит хлоропласты.
Склеренхима состоит из вытянутых клеток с равномерно утолщенными, часто одревесневшими оболочками, содержимое которых отмирает на ранних стадиях. Оболочки склеренхимных клеток обладают высокой прочностью, близкой к прочности стали. Эта ткань широко представлена в вегетативных органах наземных растений и составляет их осевую опору.
Различают два типа склеренхимных клеток: волокна и склереиды. Волокна — это длинные тонкие клетки, обычно собранные в тяжи или пучки (например, лубяные или древесинные волокна). Склереиды — это округлые мертвые клетки с очень толстыми одревесневшими оболочками. Ими образованы семенная кожура, скорлупа орехов, косточки вишни, сливы, абрикоса; они придают мякоти груш характерный крупчатый характер.
Рис 8.5. Паренхимные ткани: 1—3 — хлорофиллоносная (столбчатая, губчатая и складчатая соответственно); 4—запасающая (клетки с зернами крахмала); 5 — воздухоносная, или аэренхима.
Клетки ассимиляционной ткани содержат хлоропласты и выполняют функцию фотосинтеза. Основная масса этой ткани сосредоточена в листьях, меньшая часть — в молодых зеленых стеблях.
БИОЛОГИЧЕСКИЙ ОТДЕЛ ЦЕНТРА ПЕДАГОГИЧЕСКОГО МАСТЕРСТВА
Ткани высших растений
Автор статьи Вислобоков Н.А.
Ткань – это совокупность клеток, имеющих общее происхождение, положение и выполняющих общую функцию. Перед тем как разбираться во всем разнообразии тканей высших растений, следует вспомнить строение растительной клетки и ее отличия от животных клеток. Клетки высших растений состоят из клеточной оболочки (клеточной стенки), протопласта (ядра и цитоплазмы) и вакуоли с клеточным соком. В цитоплазме находятся различные органеллы – рибосомы, пластиды, митохондрии, аппарат Гольджи и т.д. Отличительными чертами растительной клетки является наличие целлюлозной клеточной стенки, большой центральной вакуоли с клеточным соком, а также присутствие пластид в цитоплазме. Запасным веществом растительных клеток в отличие от животных является крахмал, а деление клеток происходит с образованием фрагмопласта.
Признаки
Клетки растений
Клетки животных
Немногочисленные крупные с клеточным соком
Многочисленные мелкие пищеварительные или сократительные
С образованием фрагмопласта
Строение растительной клетки. 1 – плазмалемма; 2 – пластида; 3 – клеточная стенка; 4 – цитоплазма; 5 – митохондрия; 6 – плазмодесма; 7 – комплекс Гольджи (диктосомы); 8 — эндоплазматическая сеть; 9 — оболочка ядра; 10 – ядрышко; 11 – ядро; 12 – тонопласт (оболочка вакуоли); 13 – вакуоль.
Ткани высших растений можно классифицировать по-разному. Так, можно различать простые и сложные ткани. Простые ткани сложены одинаковыми клетками. Например, к простым тканям относятся склеренхима, паренхима и хлоренхима. Сложные ткани состоят из разных клеток (проводящих, механических, запасающих). Примерами сложных тканей могут служить флоэма и ксилема. Также ткани можно разделить по происхождению на первичные и вторичные – образовавшиеся в результате деятельности первичных или вторичных меристем соответственно (например, первичная ксилема и вторичная ксилема). Говоря о разнообразии тканей высших растений, чаще всего прибегают к классификации, основанной на их функциях в организме растения. Так, ткани растений разделяют по выполняемым ими функциям на следующие группы:
Покровные ткани
Эпидерма – первичная покровная ткань высших растений. Она состоит из одного слоя клеток, расположенных на поверхности тела растения. Клетки эпидермы плотно сомкнуты друг с другом (без межклетников), а их клеточные стенки, обращенные к внешней среде утолщены. Снаружи эпидерма покрыта неклеточным слоем – кутикулой. Кутикула состоит из воскоподобных веществ и играет важную роль в защите растения от излишнего испарения. В составе эпидермы также можно встретить разнообразные волоски (трихомы). Трихомы могут быть одноклеточными или многоклеточными, простыми (в виде простого волоска) или сложной формы (разветвленные, звездчатые, Т-образные и т.д.). Важной частью эпидермы также являются устьица. Устьице состоит из двух замыкающих клеток обычно бобовидной формы, между которыми находится устьичная щель, способная открываться и закрываться. Устьица выполняют две важные функции – регулируют интенсивность испарения, а также через устьичную щель осуществляется газообмен растения с внешней средой. Следует отметить, что эпидерма – это «прозрачная» ткань, в основных клетках эпидермы отсутствуют хлоропласты. Однако в замыкающих клетках устьиц хлоропласты есть, они необходимы для их работы по закрыванию и открыванию устьица. Клетки эпидермы, которые прилегают к замыкающим клеткам, называются побочными. По их числу, ориентации и взаимному расположению выделяют разные типы устьичного аппарата. Так, например, различают парацитный, диацитный, анизоцитный, антомоцитный и множество других типов устьичных аппаратов.
Рисунок 1: Эпидерма.
Рисунок 2: Основные типы устьичных аппаратов. 1 – диацитный; 2 –парацитный; 3 –анизоцитный; 4 — аномоцитный.
Вторичная покровная ткань высших растений – это пробка. Пробковый слой обычно образуется на вторично утолщенных стеблях и корнях высших растений. Пробка (она же феллема), образуется в результате работы так называемого пробкового камбия (или феллогена). В феллогене клетки делятся и откладываются наружу, их клеточные стенки утолщаются и суберинизируются (опрбковевают). Суберин – это вещество непроницаемое для воды и воздуха, следовательно, внутреннее содержимое клеток вскоре отмирает. В результате пробковый слой состоит из мертвых клеток и является газо- и водонепроницаемой покровной тканью.
Рисунок 3: Феллема, феллоген, феллодерма.
Механические ткани
Существует две специализированные механические ткани высших растений – склеренхима и колленхима.
Склеренхима, как правило, состоит из клеток вытянутой формы – волокнообразных. Их клеточные стенки утолщаются и лигнифицируются, то есть одревесневают. Живое содержимое клетки впоследствии отмирает. Таким образом, склеренхима – это мертвая ткань, механическую функцию в которой выполняют жесткие клеточные стенки. Склеренхима твердая жесткая ткань и в растении она выполняет армирующую функцию, располагаясь обычно тяжами или слоями. Однако иногда склеренхима может быть представлена в виде отдельных клеток с одревесневшими клеточными стенками, разбросанных в толще некой мягкой ткани (например, паренхимы). Такие клетки называются склереидами. По форме различают разные типы склереид: брахисклереиды, астросклереиды, остеосклереиды и волокнистые склереиды. Все склеренхимные элементы вместе составляют стереом – совокупность всех толстостенных одревесневших клеток растения. Следует также помнить, что отчасти механическую функцию, подобно склеренхиме, выполняет водопроводящая ткань ксилема (в особенности ядровая древесина – вторичная ксилема, прекратившая проводить воду).
Рисунок 1: Склеренхима.
Колленхима также является механической тканью, однако клетки ее остаются живыми. Их клеточные стенки утолщаются, но неравномерно и не одревесневают. Живые клетки упругие, так как находятся под тургорным давлением, а клеточные стенки эластичны, поскольку состоят из полисахаридов. Именно эти свойства и позволяют колленхиме выполнять свою механическую функцию. Таким образом, колленхима – это живая упругая эластичная механическая ткань. Обычно колленхима располагается в тех органах высших растений, которые подвержены изгибу и должны быть упругими. Например, это стебли травянистых растений, особенно если стебель граненый или ребристый, то вдоль граней под эпидермой, скорее всего, располагаются тяжи колленхимы. Также колленхима часто встречается в листьях в черешке и вдоль средней жилки, поскольку именно эти части должны быть эластичными и упругими. Выделяют три типа колленхимы: уголковую (клеточные стенки утолщены в местах контакта трех и более клеток – «в уголках»), пластинчатую (утолщены продольные клеточные стенки) и рыхлую (похожа на уголковую, но с крупными межклетниками).
Рисунок 2: Колленхима. А – рыхлая; Б – пластинчатая; В – уголковая. 1 – первичная; клеточная стенка; 2 – вторичная клеточная стенка; 3 – межклетник; 4 – протопласт.
Ассимилирующие ткани (хлоренхима)
Высшие растения являются фотоавтотрофами, то есть получают питательные органические вещества в результате процесса фотосинтеза. Соответственно, у высших растений существуют ткани, специализированные для того, чтобы в них активно происходил фотосинтез. Такая фотосинтезирующая ткань имеет название хлоренхима, которое происходит от слова «хлор», что значит «зеленый». Действительно, эту ткань несложно узнать по ее зеленому цвету. В клетках хлоренхимы находится много хлоропластов и активно происходит фотосинтез. Эту ткань мы найдем в первую очередь в листьях высших растений, но не стоит забывать, что зеленым может быть и стебель, например, травянистого растения. В листе хлоренхима может быть представлена однородной рыхлой тканью, а может быть дифференцирована на столбчатую и губчатую. Столбчатая хлоренхима состоит из клеток вытянутой формы, которые расположены плотными рядами в один или несколько ярусов. Столбчатая хлоренхима обычно располагается под верхней эпидермой листа, то есть с той стороны, которая наиболее ярко освещена. Такая форма и расположение клеток позволяют ткани наиболее эффективно улавливать солнечный свет, необходимый для фотосинтеза. В некоторых листьях можно найти еще один столбчатый слой у нижней эпидермы. Такая анатомия характерна для растений, листья которых всегда ярко освещены с обеих сторон. Губчатая хлоренхима состоит из округлых и овальных клеток с большими межклетниками, за счет которых ткань вентилируется, в результате чего происходит газообмен, необходимый для фотосинтеза. В листе она обычно прилегает к нижней эпидерме. Хвоинка сосны является видоизмененным листом, и внутри нее также находится хлоренхима. Но ее клетки имеют извилистые очертания, за что хлоренхима называется складчатой. У некоторых мохообразных фотосинтезирующие ткани имеют вид зеленых нитей из одного ряда клеток, а в хлоренхиме антоцеротовых каждая клетка имеет только один очень большой хлоропласт.
Рисунок 1: Хлоренхима.
Рисунок 2: Поперечный срез листа. 1 – эпидерма; 2 – столбчатая хлоренхима; 3 – губчатая хлоренхима; 4 – подустьичная полость; 5 – устьице.
Поглощающие ткани
Высшие растения поглощают воду с помощью специальных тканей. У мохообразных отсутствуют корни, и всасывание воды происходит всей поверхностью тела (например, с помощью гиалиновых клеток у сфагновых мхов) или с помощью ризоидов – длинных тонкостенных клеток. Сосудистые растения имеют корни, поверхность которых покрыта ризодермой (эпиблемой) – специализированной всасывающей тканью. Ризодерма гомологична эпидерме, то есть также формируется из одного внешнего слоя клеток, покрывающих орган. Однако ризодерма не является покровной тканью, поскольку практически не выполняет защитную функцию. Ее клетки тонкостенные и специализируются на поглощении воды и минеральных солей из почвы, поглощение при этом происходит избирательно и с затратой энергии. В ризодерме различают два типа клеток: трихобласты и атрихобласты. У трихобластов наружная часть клетки выпячивается и образует длинный вырост – корневой волосок, служащий для увеличения поверхности всасывания. Корневой волосок выделяет слизь, которая помогает растворять поглощать минеральные вещества из почвы. Атрихобласты не формируют корневых волосков, но также поглощают вещества своей поверхностью.
Рисунок: Ризодерма. А – Продольный разрез корня; Б – Клетки ризодермы. 1 – зона проведения; 2 – зона всасывания; 3 – зона роста; 4 – зона деления; 5 – корневые волоски; 6 – корневой чехлик.
У некоторых тропических эпифитных растений вместо ризодермы развивается веламен. Веламен гомологичен ризодерме, но в отличие от нее является многослойной тканью и состоит из отмерших клеток. Их клеточные стенки имеют спиральные утолщения, которые служат ребрами жесткости, сами клеточные стенки частично разрушаются, а внутреннее содержимое клеток отмирает. В результате получается структура наподобие губки, которая способна впитывать воду из влажного воздуха, тумана или осадков. Таким образом, веламен поглощает вещества пассивно и не избирательно. Направленный и избирательный транспорт воды дальше внутрь корня происходит при участии экзодермы, подстилающей веламен (как, впрочем, и любую ризодерму).
Проводящие ткани (ксилема, флоэма)
Ксилема – сложная ткань, то есть состоит из клеток разной морфологии. В состав ксилемы одновременно входят и проводящие, и механические, и запасающие элементы.
Ксилема проводит воду с растворенными в ней минеральными веществами от корней по всему остальному телу растения. Таким образом, по ксилеме в основном осуществляется восходящий ток. Проводящие элементы ксилемы – это сосуды и трахеиды. Следует помнить, что ксилема голосеменных растений лишена сосудов. Трахеида образуется из клетки удлиненной формы, ее клеточная стенка утолщается и лигнифицируется, то есть одревесневает. Протопласт при этом отмирает и в результате получается мелкий капилляр, по которому может транспортироваться вода. Прочные клеточные стенки предохраняют просвет капилляра от схлопывания. От трахеиды к трахеиде вода транспортируется через специальные поры. Сосуд, по сути, является таким же капилляром, как и трахеида, но более длинным, широкопросветным и многоклеточным. Каждый сосуд состоит из отдельных клеток (члеников сосуда) с одревесневшей оболочкой и отмершим протопластом, между члениками сосуда формируются уже не поры, а перфорационные пластинки (то есть сквозные отверстия). Между сосудами, как и между трахеидами, есть поры, через которые также может транспортироваться вода. Кроме проводящих элементов, в состав ксилемы входят механические волокна – волокна либриформа. Это удлиненные клетки, похожие на трахеиды, однако их клеточные стенки очень сильно утолщены и лигнифицированы. Просвет таких капилляров слишком мал для осуществления транспорта воды, зато толстая и прочная клеточная стенка выполняет механическую функцию подобно склеренхиме. Ксилема в основном состоит из мертвых клеток, обычно небольшой процент живых клеток представлен древесинной паренхимой. Эти клетки в основном выполняют запасающую функцию.
Флоэма, как и ксилема, – это сложная ткань, которая состоит из разных клеток. В состав флоэмы входят проводящие механические и паренхимные (в том числе запасающие) элементы.
Флоэма транспортирует раствор питательных веществ, в основном это углеводы, образовавшиеся в результате фотосинтеза. Поскольку фотосинтез происходит преимущественно в листьях, а питательные вещества нужно доставлять во все части растения, в том числе и в корни, по флоэме преимущественно осуществляется нисходящий ток веществ. Проводящими элементами являются ситовидные клетки. Это живые клетки, они имеют вытянутую форму, а в их стенках формируются так называемые ситовидные поля. Ситовидное поле – это участок клеточной стенки, где близко друг к другу расположено множество плазмодесм. Через ситовидные поля происходит транспорт веществ от одной ситовидной клетки к другой. У покрытосеменных растений проводящими элементами флоэмы являются ситовидные трубки. Ситовидная трубка – это более длинная многоклеточная проводящая структура. Состоит она из одного ряда клеток, называемых члениками ситовидной трубки. В местах контакта члеников друг с другом формируются ситовидные пластинки – участки клеточной стенки, где расположено одно или несколько сближенных ситовидных полей. Вещества транспортируются по внутреннему содержимому живой клетки. Однако в ситовидных элементах деградируют многие органеллы, в том числе и ядро. Таким образом, ситовидная клетка и членик ситовидной трубки находятся в «полуживом» состоянии. При этом существуют специальные клетки, которые поддерживают ситовидные элементы в этом состоянии, обеспечивают и регулируют их жизнедеятельность. Такие клетки называются клетками-спутницами у члеников ситовидных трубок, а ситовидные клетки поддерживают специальные клетки Страсбургера. Кроме проводящих элементов во флоэме, как и в ксилеме, находятся паренхимные (запасающие) клетки, а также механические элементы (лубяные волокна). Волокна обычно представлены удлиненными клетками с толстой одревесневшей клеточной стенкой.
Запасающие ткани (запасающая паренхима)
Запасающие ткани высших растений бывают различными по происхождению, также различия заключаются в том, какие именно вещества и в какой части клетки запасаются.
Главное запасное вещество высших растений – это крахмал. Крахмал синтезируется и откладывается в виде зерен в специальных пластидах – амилопластах. Крахмальные зерна увеличиваются в размере и растягивают пластиду. В результате клетка такой запасающей ткани содержит множество крупных зерен крахмала – примером может служить запасающая ткань в клубне картофеля.
Если растение запасает питательные вещества не на очень долгий срок, то они могу откладываться в виде сахаров в вакуолях клеток. Например, в сочной ткани многих плодов. Сочный плод рассчитан на то, что его съест некое животное, а значит, он должен быть привлекательным для него – питательным и сладким.
В эндосперме некоторых семян запасание происходит за счет утолщения клеточной стенки, в которой откладывается гемицеллюлоза.
При прорастании семени клетки частично растворяют свои клеточные стенки и потребляют углеводы, из которых она состоит. В качестве запасного вещества может выступать белок. Он может откладываться в вакуолях (алейрон) или в лейкопластах. В цитоплазме запасаются жиры в виде сферосом.
Кроме питательных веществ, ткань может запасать воду. Клетки водоносной ткани бывают ослизнены и имеют крупные вакуоли, в которых сохраняется влага.
Рисунок: Запасающая паренхима клубня картофеля. 1 – крахмальные зерна.
Основные ткани (основная паренхима)
К системе тканей основной паренхимы традиционно относят все ткани, образованные из основной меристемы (не являющиеся покровными и проводящими) то есть запасающие, фотосинтезирующие и т.д. Однако эти ткани специализированы на выполнении конкретной функции и рассматриваются обычно отдельно. Основной паренхимой в узком смысле называют ткань, состоящую из рыхло расположенных более или менее шарообразных клеток.
Между клетками есть заметные межклетники.
Данная ткань не специализирована для выполнения какой-то определенной функции, это структурная ткань, заполняющая пространство того или иного органа. Поскольку клетки основной паренхимы живые, их клеточные стенки не лигнифицированы, а в цитоплазме есть полный набор клеточных органелл, при необходимости она может становиться запасающей, водоносной или фотосинтезирующей тканью.
Также основная паренхима может проявлять меристематическую активность – клетки могу начать делиться. Со временем клеточные стенки паренхимы могут одревесневать, тем самым начиная выполнять механическую функцию.
Таким образом, основная паренхима – это неспециализированная структурная ткань, которая может специализироваться при определенных условиях.
Рисунок: Основная паренхима.
Образовательные ткани
Массив ткани, в которой происходят клеточные деления в теле высшего растения, следует назвать образовательной тканью или меристемой. Образовательные ткани не являются постоянными. Клетки меристемы недифференцированные и не специализированные, у них тонкие клеточные оболочки. Данные клетки делятся и в дальнейшем преобразуются в ту или иную специализированную ткань.
Высшие растения имеют верхушечный рост, их побеги (и корни) нарастают за счет верхушечной или апикальной меристемы. Рассмотрим апикальную меристему стебля. Это массив делящихся клеток на вершине растущей оси побега, ниже апекса ткань разделяется на три отдельные меристемы: протодерму, прокамбий и основную меристему. Протодерма – это один поверхностный слой клеток меристемы. Из протодермы в дальнейшем формируется эпидерма. Прокамбий представлен тяжами клеток, которые дифференцируясь, становятся проводящими тканями (формируют проводящие пучки). Остальные ткани стебля (паренхима, хлоренхима, склеренхима и т.д.) формируются из основной меристемы.
Рисунок 1: Апикальная меристема стебля.
У высших растений выделяют две вторичные латеральные меристематические ткани – камбий и феллоген. Камбий (или сосудистый камбий) закладывается в проводящих пучках стебля или корня между флоэмой и ксилемой. В результате клеточных делений внутрь откладывается ткань, дифференцирующаяся в ксилему, а наружу – будущая флоэма. За счет работы камбия происходит процесс вторичного утолщения стебля или корня. Соответственно, сформированные камбием проводящие ткани будут называться вторичными – вторичная ксилема и вторичная флоэма. Следует помнить, что при вторичном утолщении камбиальная зона возникает не только внутри проводящих пучков, но и формируется так называемый межпучковый камбий. В результате на поперечном срезе камбий имеет вид общего меристематического кольца.
Рисунок 2: Камбий. 1 – эпидерма; 2 – паренхима; 3 – флоэмные волокна; 4 – флоэма; 5 – пучковый камбий; 6 – ксилема; 7 – межпучковый камбий.
Феллоген (или пробковый камбий) возникает в корнях и стеблях растений при их вторичном утолщении. При утолщении эпидерма и впоследствии первичная кора опадает и отмирает, покровную функцию в данном случае выполняет пробковый слой, формируемый феллогеном. В результате клеточных делений в феллогене, наружу откладываются клетки феллемы (или пробка). Феллоген снизу подстилается слоем клеток – феллодермой. Комплекс из трех данных тканей носит название перидерма.
Рисунок 3: Феллема, феллоген, феллодерма.
Секреторные ткани (железистые волоски, смоляные ходы)
Секреторные (или выделительные) структуры высших растений очень разнообразны как по строению, так и по происхождению. Они делятся на две группы: экзогенные и эндогенные.
Экзогенные секреторные структуры расположены на поверхности тела растения. К ним относятся гидатоды – структуры, выделяющие капельно-жидкую воду. Их наличие характерно для растений, обитающих в условиях повышенной влажности. К гидатоде подходят проводящие элементы ксилемы, по которым транспортируется вода. Также к экзогенным структурам относятся различные железистые волоски или более крупные многоклеточные железки. Они, как правило, выделяют эфирные масла, которые скапливаются под кутикулой наружных клеток структуры. Нектарники также являются экзогенными секреторными структурами. Они выделяют секрет богатый сахарами, сахара поступают в нектарники по флоэмным элементам. Различают флоральные (расположенные в цветке) и экстрафлоральные нектарники.
Эндогенные секреторные структуры находятся внутри тела растения. Они бывают одноклеточные и многоклеточные. Одноклеточные структуры могут быть разнообразными по содержанию – это слизевые, кристаллоносные, масляные клетки, одноклеточные млечники, а также прочие клетки, накапливающие в себе те или иные вещества. Многоклеточные эндогенные структуры обычно выделяют секрет в некую полость, представляющую собой межклетник. По типу межклетников различают схизогенные и лизигенные вместилища. По типу содержащегося в них секрета различают смоляные, слизевые, камеденосные ходы и т.д. К многоклеточным структурам также относят млечники. Они состоят из трубчатых клеток, внутри которых находится млечный сок. Если концевые стенки трубчатых клеток деградируют, то такой млечник называют нечленистым.
Рисунок: Секреторные структуры.
Вентиляционные ткани (аэренхима)
Аэренхима – это вентиляционная ткань или ткань проветривания. Главную функцию аэренхимы выполняют крупные межклетники, по которым и циркулирует воздух. Воздух необходим высшим растениям как для дыхания, так и для процессов фотосинтеза. Наличие аэренхимы характерно для водных или околоводных высших растений. Воздух, находящийся в системе полостей аэренхимы, не только вентилирует все части растения (в особенности подводные), но и придает им плавучесть, как, например, листьям кувшинки.
Аэренхима обычно имеет вид системы полостей с однослойными стенками. Клетки, слагающие стенки полостей могут иметь вытянутую форму или же могут быть шарообразной формы. Сами полости при этом в некоторых местах имеют тонкие пленчатые перегородки из одного ряда мелких клеток. Клетки этих перегородок имеют звездчатую форму, таким образом, между «лучей» данных клеток остаются мелкие отверстия в пленке (межклетники). Данные перегородки не мешают выполнять вентиляционную функцию аэренхиме, пропуская воздух через эти мелкие отверстия. Однако, если произойдет повреждение и полость начнет заполняться водой, то такая перегородка не попустит капельно-жидкую воду, поскольку поверхностное натяжение жидкости не позволит ей пройти сквозь мелкие отверстия. Такая аэренхима встречается у кувшинки, ириса, рдеста и т.д.
В другом случае аэренхима может быть целиком представлена только звездчатыми клетками. Такие клетки формируют трехмерную рыхлую ткань, похожую по консистенции на вату. Между «лучей» этих клеток также формируется одно большое общее межклеточное пространство, по которому циркулирует воздух. Такой тип аэренхимы характерен для ситников, осок, некоторых злаков и т.д. Также рыхлая аэренхима, многократно преломляя свет, придает белый цвет лепесткам некоторых растений.
Рисунок: Аэренхима. А – аэренхима на поперечном срезе стебля; Б – клетки пленчатой перегородки, разделяющей полости аэренхимы; В – аэренхима из трехмерно расположенных звездчатых клеток.
Вентиляционная ткань выполняет свою функцию за счет многочисленных увеличенных межклетников. Стоит помнить, что межклетники по типу происхождения делятся на три типа. Схизогенные межклетники образовались в результате простого расхождения клеток в пространстве. Лизигенные полости формируются в результате деградации (лизиса) некоторых клеток. Крупные рексигенные полости являются результатом механического разрыва тканей, например, в центре черешков или стеблей некоторых растений.