какие два статистических критерия часто применяют для проверки гипотезы

Мир статистических гипотез

В современном мире мы обладаем все большим и большим объемом данных о событиях, происходящих вокруг. Зачастую у нас появляются вопросы, на которые хотелось бы быстро ответить на основе имеющейся информации, для этого как нельзя лучше подходит процесс, связанный с проверкой статистических гипотез. Однако, многие считают, что это занятие подразумевает под собой большое число вычислений и в принципе довольно сложно для понимания. На самом деле, алгоритм проверки гипотез достаточно прост, а для осуществления расчетов с каждым годом появляется все больше и больше готовых инструментальных средств, не требующих от человека глубоких познаний в области. Далее я попытаюсь показать, что мало того, что процесс проверки гипотез может быть полезным, так и осуществляется достаточно быстро и без серьезных усилий.

какие два статистических критерия часто применяют для проверки гипотезы. Смотреть фото какие два статистических критерия часто применяют для проверки гипотезы. Смотреть картинку какие два статистических критерия часто применяют для проверки гипотезы. Картинка про какие два статистических критерия часто применяют для проверки гипотезы. Фото какие два статистических критерия часто применяют для проверки гипотезы

Статистические гипотезы и области их применения

Проверка статистических гипотез является важнейшим классом задач математической статистики. С помощью данного инструмента можно подтвердить или отвергнуть предположение о свойствах случайной величины путем применения методов статистического анализа для элементов выборки. Если в предыдущем предложении какие-либо термины являются не совсем понятными, ниже можно найти пояснение на простом языке.

Для проверки статистических гипотез зачастую применяются статистические тесты, о которых будет рассказано далее.

Алгоритм проверки статистической гипотезы

В обобщенном виде алгоритм выглядит таким образом:

Формулировка основной (H0) и альтернативной (H1) гипотез

Выбор уровня значимости

Выбор статистического критерия

Определения правила принятия решения

Итоговое принятие решения на основе исходной выборки данных

Данные шаги являются унифицированными и схему можно использовать почти во всех случаях. Далее подробнее рассмотрим пример работы данного алгоритма на конкретных данных.

Пример проверки статистической гипотезы

Итак, как вы, наверное, догадались по вышеприведенным примерам, будем проверять гипотезу о том, что имеется существенное различие между числом созданных европейских AI-стартапов в 2019-м и 2020-м годах. Пример достаточно простой, чтобы было проще разобраться в ходе работы алгоритма.

Проверка гипотезы о законе распределения

Для данных 2019-го года проверим нормальность распределения.

H0: случайная величина распределена нормально

H1: случайная величина не распределена нормально

Пусть уровень значимости alpha = 0.05 (как и в 95-ти процентах статистических тестов). Определение уровня значимости достойно отдельного поста, так что не будем заострять на нем внимание.

Будет использован критерий Шапиро-Уилка.

какие два статистических критерия часто применяют для проверки гипотезы. Смотреть фото какие два статистических критерия часто применяют для проверки гипотезы. Смотреть картинку какие два статистических критерия часто применяют для проверки гипотезы. Картинка про какие два статистических критерия часто применяют для проверки гипотезы. Фото какие два статистических критерия часто применяют для проверки гипотезы, какие два статистических критерия часто применяют для проверки гипотезы. Смотреть фото какие два статистических критерия часто применяют для проверки гипотезы. Смотреть картинку какие два статистических критерия часто применяют для проверки гипотезы. Картинка про какие два статистических критерия часто применяют для проверки гипотезы. Фото какие два статистических критерия часто применяют для проверки гипотезы, какие два статистических критерия часто применяют для проверки гипотезы. Смотреть фото какие два статистических критерия часто применяют для проверки гипотезы. Смотреть картинку какие два статистических критерия часто применяют для проверки гипотезы. Картинка про какие два статистических критерия часто применяют для проверки гипотезы. Фото какие два статистических критерия часто применяют для проверки гипотезы, какие два статистических критерия часто применяют для проверки гипотезы. Смотреть фото какие два статистических критерия часто применяют для проверки гипотезы. Смотреть картинку какие два статистических критерия часто применяют для проверки гипотезы. Картинка про какие два статистических критерия часто применяют для проверки гипотезы. Фото какие два статистических критерия часто применяют для проверки гипотезы;

Можно сравнить статистику W с критическим значением Wкрит. Критическое значение чаще всего приведено в готовых таблицах (по строкам/столбцам там отмечен объем выборки и уровень значимости, а на пересечении как раз-таки и лежит Wкрит.). Если W>Wкрит., то не отвергаем H0 и наоборот. Но это не очень удобно, поэтому чаще используется второй способ.

Разнообразие статистических критериев

Как мы увидели на примере, важным шагом в проверке статистической гипотезы является выбор критерия. В примере выше я использовала лишь два статистических критерия, но по факту их гораздо больше, так сказать, на все случаи жизни. Данные критерии важно знать и четко нужно осознавать, когда и какой можно применить. Многие из них направлены на сравнение центров распределений случайных величин, например, сравнение средних, медиан, равенство параметра распределения какому-либо числу и т. д. В основном они делятся на параметрические (знаем закон распределения случайной величины) и непараметрические.

Для вашего удобства внизу (рис. 3) приведена таблица с основными, с моей точки зрения, критериями сравнения центров распределения и их классификацией. Надеюсь, она будет вам полезна, ее можно дополнять и расширять по вашему желанию.

Источник

Какие два статистических критерия часто применяют для проверки гипотезы

1. Статистические гипотезы. Основные понятия.

2. Гипотезы о законе распределения.

3. Гипотезы о числовом значении генерального среднего и дисперсии.

1. Статистические гипотезы. Основные понятия.

В тех случаях, когда известен закон, но неизвестны значения его параметров (дисперсия или математическое ожидание) в конкретной ситуации, статистическую гипотезу называют параметрической.

Например, предположение об ожидаемом среднем доходе по акциям или разбросе дохода являются параметрическими гипотезами.

Когда закон распределения генеральной совокупности не известен, но есть основания предположить, каков его конкретный вид, выдвигаемые гипотезы о виде его распределения называются непараметрическими.

Например, можно выдвинуть гипотезу, что число дневных продаж в магазине или доход населения подчинены нормальному закону распределения.

По содержанию статистические гипотезы можно классифицировать:

1. Гипотезы о типе вероятностного закона распределения случайной величины, характеризующего явление или процесс.

2. Гипотезы об однородности двух или более обрабатываемых выборок. Изучаемое свойство исследуется с помощью двух или более генеральных совокупностей. Гипотеза в этом случае может заключаться в следующем: исследуемые выборочные характеристики различаются между собой статистически значимо или нет.

3. Гипотезы о свойствах числовых значений параметров исследуемой генеральной совокупности. Больше ли значения параметров некоторого заданного номинала или меньше и т.д.

4. Гипотезы о вероятностной зависимости двух или более признаков, характеризующих различные свойства рассматриваемого явления или процесса. При этом определяется характер этой зависимости.

Гипотезы бывают простые (содержащие одно предположение) и сложные (содержащие несколько предположений).

Под статистическим критерием понимают однозначно определенное правило, устанавливающее условие, при котором проверяемая гипотеза отвергается либо не отвергается.

Увеличение числа заболевших некоторым заболеванием дает возможность выдвинуть гипотезу о наличии эпидемии. Для сравнения доли заболевших в обычных и экстремальных условиях используются статистические данные, на основании которых делается вывод о том, является ли данное массовое заболевание эпидемией. Предполагается, что существует некоторый критерий- уровень доли заболевших, критический для этого заболевания, который устанавливается по ранее имевшимся случаям.

Различают три вида критериев:

Проверка параметрических гипотез проводится на основе критериев значимости., а непараметрических- критериев согласия.

Задача проверки статистических гипотез сводится к исследованию генеральной совокупности по выборке. Множество возможных значений элементов выборки может быть разделено на два непересекающихся подмножества- критическую область и область принятия гипотезы.

Областью принятия гипотезы или областью допустимых значений Iдоп называют совокупность значений критерия, при которых эту гипотезу принимают.

Критической областью Iкр называют множество значений критерия, при котором гипотезу отвергают.

Наблюдаемые значения критерия (статистика) Kнабл называют такое значение критерия, которое находится по данным выборки.

С помощью уровня значимости определяются границы критической области.

Основной принцип проверки статистических гипотез состоит в следующем: если наблюдаемое значение статистики критерия попадает (не попадает) в критическую область, то гипотеза H0 отвергается (принимается), а гипотеза H1 принимается (отвергается) в качестве одного из возможных решений с формулировкой «гипотеза H0 противоречит (не противоречит) выборочным данным на уровне значимости ».

В зависимости от содержания альтернативной гипотезы осуществляется выбор критической области: левосторонней, правосторонней, двусторонней. Если смысл исследования заключается в доказательстве конкретного изменения наблюдаемого параметра (его уменьшения или увеличения), то говорят об односторонней критической области. Если смысл исследования- выявить различия в изучаемых параметрах, но характер их отклонения от контрольных (или теоретических) не известен, то говорят о двусторонней критической области.

Однако, принятие той или иной гипотезы не дает оснований утверждать, что она верна. Результат проверки статистической гипотезы лишь устанавливают на определенном уровне значимости ее соответствие (несоответствие) результатам эксперимента.

При проверке статистических гипотез возможны следующие ошибки:

2. Отвергнута правильная альтернативная гипотеза H1 и принята неправильная нулевая гипотеза H0 — ошибка второго рода.

Можно доказать, что с уменьшением ошибок первого рода одновременно увеличиваются ошибки второго рода и наоборот. Поэтому, на практике пытаются подбирать значения параметров и опытным путем в целях минимизации суммарного эффекта от возможных ошибок. При принятии управленческих решений для одновременного уменьшения ошибок первого и второго рода самым действенным средством является увеличение объема выборки, что согласуется с законом больших чисел.

На бытовом уровне ошибки второго рода могут иметь более трагические последствия, чем ошибки первого рода.

2. Гипотеза о законе распределения. Критерий согласия Пирсона ( X 2 -критерий).

Критериями согласия называют критерии, в которых гипотеза определяет закон распределения либо полностью, либо с точностью до небольшого числа параметров.

Причины расхождения результатов эксперимента и теоретических характеристик могут быть вызваны малым объемом выборки, неудачным способом группировки наблюдений, ошибками в выборе гипотезы о виде распределения генеральной совокупности и др.

Рассмотрим универсальный критерий согласия Пирсона. Проверка гипотезы о том, что эмпирическая частота мало отличается от соответствующей теоретической частоты, осуществляется с помощью величины X 2 меры расхождения между ними.

Для произвольной выборки, когда распределение непрерывно или число различных вариант велико, все пространство наблюдаемых вариант делят на конечное число непересекающихся областей, в каждой из которых подсчитывают наблюдаемую частоту и теоретическую вероятность.

Для применения критерия согласия Пирсона необходимо:

Источник

Какие два статистических критерия часто применяют для проверки гипотезы

1. Понятие нулевой гипотезы.

2. Общие принципы проверки статистических гипотез.

3. Понятие гипотезы в педагогике.

4.1 Понятие нулевой и альтернативной гипотезы

Поскольку статистика как метод исследования имеет дело с данными, в которых интересующие исследователя закономерности искажены различными случайными факторами, большинство статистических вычислений сопровождается проверкой некоторых предположений или гипотез об источнике этих данных.

Гипотеза 1. Успеваемость класса стохастически (вероятностно) зависит от уровня обучаемости учащихся.

Гипотеза 2. Усвоение начального курса математики не имеет существенных различий у учащихся, начавших обучение с 6 или 7 лет.

Гипотеза 3. Проблемное обучение в первом классе эффективнее по сравнению с традиционной методикой обучения в отношении общего развития учащихся.

Другое проверяемое предположение (не всегда строго противоположное или обратное первому) называется конкурирующей или альтернативной гипотезой. Так, для упомянутого выше примера гипотезы Н0 в педагогике одна из возможных альтернатив Н1 будет определена как: уровни выполнения работы в двух группах учащихся различны и это различие определяется влиянием неслучайных факторов, например, тех или других методов обучения.

Выдвинутая гипотеза может быть правильной или неправильной, поэ­тому возникает необходимость проверить ее. Так как проверку произво­дят статистическими методами, то данная проверка называется статистической.

При проверке статистических гипотез возможны ошибки (ошибочные суждения) двух видов:

— можно отвергнуть нулевую гипотезу, когда она на самом деле верна (так называемая ошибка первого рода);

можно принять нулевую гипотезу, когда она на самом деле не верна (так называемая ошибка второго рода).

Ошибка, состоящая в принятии нулевой гипотезы, когда она ложна, качественно отличается от ошибки, состоящей в отвержении гипотезы, когда она истинна. Эта разница очень существенна вследствие того, что различна значимость этих ошибок. Проиллюстрируем вышесказанное на следующем примере.

Пример 1. Процесс производства некоторого медицинского препарата весьма сложен. Несущественные на первый взгляд отклонения от технологии вызывают появление высокотоксичной побочной примеси. Токсичность этой примеси может оказаться столь высокой, что даже такое ее количество, которое не может быть обнаружено при обычном химическом анализе, может оказаться опасным для человека, принимающего это лекарство. В результате, прежде чем выпускать в продажу вновь произведенную партию, ее подвергают исследованию на токсичность биологическими методами. Малые дозы лекарства вводятся некоторому количеству подопытных животных, например, мышей, и результат регистрируют. Если лекарство токсично, то все или почти все животные гибнут. В противном случае норма выживших велика.

Исследование лекарства может привести к одному из возможных способов действия: выпустить партию в продажу (а1), вернуть партию поставщику для доработки или, может быть, для уничтожения (а2).

Рассмотрим случай когда предпринимается действие а2, в то время когда а1 является более предпочтительным. Это означает, что вследствие неточностей в проведении эксперимента партия нетоксичного лекарства классифицировалась как опасная. Последствия ошибки могут выражаться в финансовом убытке и в увеличении стоимости лекарства. Однако случайное отвержение совершенно безопасного лекарства, очевидно, менее нежелательно, чем, пусть даже изредка происходящие гибели пациентов. Отвержение нетоксичной партии лекарства – ошибка второго рода.

Допустимая вероятность ошибки первого рода (Ркр) может быть равна 5% или 1% (0.05 или 0.01).

Альтернативные гипотезы принимаются тогда и только тогда, когда опровергается нулевая гипотеза. Это бывает в случаях, когда различия, скажем, в средних арифметических экспериментальной и контрольной групп настолько значимы (статистически достоверны), что риск ошибки отвергнуть нулевую гипотезу и принять альтернативную не превышает одного из трех принятых уровней значимости статистического вывода:

первый уровень — 5% (р=5%); где допускается риск ошибки в выводе в пяти случаях из ста теоретически возможных таких же экспериментов при строго случайном отборе испытуемых для каждого экспе­римента;

второй уровень — 1%, т. е. соответственно допускается риск ошибиться только в одном случае из ста;

третий уровень — 0,1%, т. е. допускается риск ошибить­ся только в одном случае из тысячи.

Последний уровень значимости предъявляет очень высокие требования к обоснованию достоверности результатов экспе­римента и потому редко используется. В педагогических исследованиях, не нуждающихся в очень высоком уровне достоверности, представляется разумным принять 5% уровень значимости.

Статистика критерия (Т) — некоторая функция от исходных данных, по значению которой проверяется нулевая гипотеза. Чаще всего статистика критерия является числовой функцией, но она может быть и любой другой функцией, например, многомерной функцией.

Всякое правило, на основе которого отклоняется или принимается нулевая гипотеза называется критерием для проверки данной гипотезы. Статистический критерий (критерий) – это случайная величина, которая служит для проверки статистических гипотез.

Критическая область – совокупность значений критерия, при котором нулевую гипотезу отвергают. Область принятия нулевой гипотезы (область допустимых значений) – совокупность значений критерия, при котором нулевую гипотезу принимают. При справедливости нулевой гипотезы вероятность того, что статистика критерия попадает в область принятия нулевой гипотезы должна быть равна 1-Ркр.

4.2 Общие принципы проверки статистических гипотез

Процедура проверки нулевой гипотезы в общем случае включает следующие этапы:

1. задается допустимая вероятность ошибки первого рода (Ркр=0,05)

2. выбирается статистика критерия (Т)

3. ищется область допустимых значений

4. по исходным данным вычисляется значение статистики Т

5. если Т (статистика критерия) принадлежит области принятия нулевой гипотезы, то нулевая гипотеза принимается (корректнее говоря, делается заключение, что исходные данные не противоречат нулевой гипотезе), а в противном случае нулевая гипотеза отвергается и принимается альтернативная гипотеза. Это о сновной принцип проверки всех статистических гипотез.

Обычно первые три этапа выполняют профессиональные математики, а последние два – пользователи для своих частных данных.

При проверке статистических гипотез с помощью статистических пакетов, программа выводит на экран вычисленное значение уровня значимости Р и подсказку о возможности принятия или неприятия нулевой гипотезы.

Если вычисленное значение Р превосходит выбранный уровень Ркр,
то принимается нулевая гипотеза, а в противном случае — альтернативная гипотеза. Чем меньше вычисленное значение Р, тем более исходные данные противоречат нулевой гипотезе.

Число степеней свободы у какого-либо параметра определяют как число опы­тов, по которым рассчитан данный параметр, минус количество одинаковых значений, найденных по этим опытам независимо друг от друга.

Величина Ф называется мощностью критерия и представляет собой вероятность отклонения неверной нулевой гипотезы, то есть вероятность правильного решения. Мощность критерия – вероятность попадания критерия в критическую область при условии, что справедлива альтернативная гипотеза. Чем больше Ф, тем вероятность ошибки 2-го рода меньше.

4.3 Понятие гипотезы в педагогике

Гипотеза исследования – методологическая характеристика исследования, научное предположение, выдвигаемой для объяснения какого-либо явления и требующее проверки на опыте для того, чтобы стать достоверным научным знанием. От простого предположения гипотеза отличается рядом признаков. К ним относят:

— соответствие фактам, на основе которых и для обоснования которых она создана

— приложимость к возможно более широкому кругу явлений

В гипотезе органически сливаются два момента: выдвижение некоторого положения и последующее логическое и практическое доказательство.

Педагогическая гипотеза (научное предположение о преимуществе того или иного метода) в процессе статистического анализа переводится на язык статисти­ческой науки и заново формулируется, по меньшей мере, в виде двух статистических гипотез.

Возможны два типа гипотез: первый тип — описа­тельные гипотезы, в которых описываются причины и возможные следствия. Второй тип — объяснительные: в них дается объяснение возможным следствиям из опре­деленных причин, а также характеризуются условия, при которых эти следствия обязательно последуют, т. е. объяс­няется, в силу каких факторов и условий будет данное следствие. Описательные гипотезы не обладают предвидением, а объяснительные обладают таким свойством. Объясни­тельные гипотезы выводят исследователей на предпо­ложения о существовании определенных закономерных связей между явлениями, факторами и условиями.

Гипотезы в педагогических иссле­дованиях могут предполагать, что одно из средств (или группа их) будет более эффективным, чем другие средства. Здесь гипотетически высказывается предположение о сравнительной эффективности средств, способов, методов, форм обучения.

Более высокий уровень гипотетического предсказания состоит в том, что автор исследования высказывает гипотезу о том, что какая-то система мер будет не только лучше другой, но и из ряда возможных систем она кажется оптимальной с точки зрения определенных критериев. Такая гипотеза нуждается в еще более строгом и оттого более развернутом доказательстве.

Источник

Интуитивное объяснение проверки гипотез и p-значение

Привет, Хабр! Представляю вашему вниманию перевод статьи «An intuitive explanation of Hypothesis Testing and P-Values» автора Joos Korstanje.

Несколько лет назад я делал свою первую фриланс-работу по статистике для компании по доставке фруктов и овощей. Двадцать четыре часа в день поступающие продукты от фермеров до того, как были отправлены в супермаркеты, проходили через отдел по контролю за качеством. Выбор продуктов осуществлялся случайно работниками данного отдела.

В годовом отчёте они заметили, что качество в этом году ниже, чем качество в прошлом: разница составила примерно половину пункта по шкале от 1 до 10.

Потом пригласили меня. Я должен был ответить на вопрос:

Являются ли эти 0,5 пунктов существенной разницей?

Если вы не знаете статистику, то этот вопрос может показаться вам странным. Но не беспокойтесь: цель этой статьи показать вам как можно ответить на этот вопрос, используя проверку гипотез, также называемое статистическим выводом.

Игра в числа: вклад одного яблока

Представьте себе, что вы проверяете яблоко на предмет хорошее оно или плохое, используя случайную выборку яблок из очень большой коробки с яблоками. В изображении ниже мы видим реальный эффект размера выборки на измерения: эффект одного яблока очень существенен для маленьких выборок и становится менее и менее значимым, чем больше размер выборки.

какие два статистических критерия часто применяют для проверки гипотезы. Смотреть фото какие два статистических критерия часто применяют для проверки гипотезы. Смотреть картинку какие два статистических критерия часто применяют для проверки гипотезы. Картинка про какие два статистических критерия часто применяют для проверки гипотезы. Фото какие два статистических критерия часто применяют для проверки гипотезы

Вклад одного яблока зависит от размера выборки.

Понимание влияния размера выборки — это первый базис для понимания проверки гипотез. Мы можем начать утверждать, что 0.5 на 2 яблоках будет как разница в 1 яблоко, очень маленькая. Но на 100 яблоках, 0.5 будет представлять собой разницу в 50 яблок: очень большая разница!

На малых выборках 0.5 пункта это небольшая разница, но на больших выборках 0.5 это разница большая.

Насколько большая должна быть выборка: проверка гипотез и значимость как ответ

Есть несколько способов, чтобы ответить на данный вопрос, но в этой статье я собираюсь погрузиться в статистический вывод или проверку гипотез.

Проверка гипотез — это семейство статистических методов используемых, чтобы понять, как выборка наблюдаемых объектов может использоваться, чтобы принять или отвергнуть заранее поставленную гипотезу. Проверка гипотез используется для решения многих задач, в основном в научных исследованиях и как ключевой метод в онлайн маркетинге (А\Б тестирование).

Математики разработали проверку гипотез таким образом, что существует определённая процедура для поиска истины.

Проверка гипотез позволяет только проверить гипотезы, но не разработать их.

Из коробки, в которой 100 яблок (назовём её генеральной совокупностью), мы возьмём выборку из 8 яблок. В этом году из 8 яблок 5 оказались гнилыми (62%), а в выборке прошлого года из 8 яблок было только 4 гнилых (50%). Мы хотим использовать проверку гипотез, чтобы определить стал ли процент гнилых яблок в этом году больше, чем в прошлом.

Проверка гипотез — это математическая альтернатива для измерения генеральной совокупности. Благодаря этим вычислениям мы можем обобщить измерения небольшой выборки на большую генеральную совокупность. Так мы проделываем меньше работы.

какие два статистических критерия часто применяют для проверки гипотезы. Смотреть фото какие два статистических критерия часто применяют для проверки гипотезы. Смотреть картинку какие два статистических критерия часто применяют для проверки гипотезы. Картинка про какие два статистических критерия часто применяют для проверки гипотезы. Фото какие два статистических критерия часто применяют для проверки гипотезы

Случайно набранная выборка имеет такой же процент гнилых яблок, как и генеральная совокупность, при условии, что набранная выборка достаточно велика.

Математики придумали способ, как обобщить вывод, основанный на выборке, на генеральную совокупность.

Этот способ начинается с формулировки чёткой исследовательской гипотезы. К сожалению, математика работает только в том случае, если у нас уже есть представление о том, что мы хотим проверить.

Основная гипотеза для нашего примера:

Процент гнилых яблок в генеральной совокупности в этом году, больше чем в прошлом.

Фактическая проверка гипотезы

Математика проверки гипотез образует баланс между результатом измерений выборки с числом наблюдений. Результатом будет p-значение.

Эти вычисления проходят через использование распределений: почти для каждой воображаемой ситуации был выведен математический закон, который описывает ожидаемый результат.

Для вопросов вида «да/нет», таких как вопрос о наших гнилых яблоках (гнилые/не гнилые), применяется закон подбрасывания монетки. Это самый простой пример математического закона: 50% выпадения решки, 50% орла.

Также очень просто это может быть представлено, как стандартное математическое распределение, которое скажет нам о вероятности наблюдений. Для примера, 7 орлов выпало из 10 подбрасываний монетки. Это называется биноминальным распределением и может быть изображено так:

какие два статистических критерия часто применяют для проверки гипотезы. Смотреть фото какие два статистических критерия часто применяют для проверки гипотезы. Смотреть картинку какие два статистических критерия часто применяют для проверки гипотезы. Картинка про какие два статистических критерия часто применяют для проверки гипотезы. Фото какие два статистических критерия часто применяют для проверки гипотезы
биноминальное распределение 10 подбрасываний монетки.

В этой статье я буду далек от тяжёлой математики, но важно знать, что мы можем использовать математические формулы для оценки того, является ли наблюдаемый процент далеким от ожидаемого процента.

В конце этой статьи я дам вам список часто используемых формул проверки гипотез для различных случаев и после объясню, как их использовать. Но сначала я объясню интерпретацию проверки гипотез.

Результат проверки гипотез: p-value

За проверкой гипотез есть математический баланс между наблюдаемыми значениями и размером выборки. В конце вычислений каждый существующий вариант тестирования гипотез выдаст стандартизированную оценку, которая позволит сравнить результат, даже когда математика не совсем одинакова.

P-value это стандартный способ, чтобы сформулировать результат проверки гипотез и использовать его в любых других тестах.

P-value это число между 0 и 1, которое говорит нам, если разница между нашим наблюдениями выборок, и наши гипотезы сильно различаются. Опорное значение – это 0.05.

Разница статистически значима, если p-value меньше 0.05.
И разница статистически не значима, если p-value больше 0.05.

Мы сделали 10 подбрасываний монетки.
Наша гипотеза: мы ожидаем 5 решек.
Наши наблюдения: мы получили 6 решек.
Вычисление p-value дало 0.518, что больше, чем 0.05.
Наш вывод: разница статистически не значима.
Наша интерпретация: результат соответствует гипотезе.

Мы сделали 10 подбрасываний монетки
Наша гипотеза: мы ожидаем 5 решек.
Наш результат: мы получили 10 решек.
Наше p-value — 0.0, что меньше чем 0.05.
Наше заключение: разница статистически значима
Наша интерпретация: результат не соответствует гипотезе.

Мы проверили 10 яблок.
Наша гипотеза: мы ожидаем 1 гнилое яблоко.
Наш результат: мы получили 1 гнилых яблок.
Наше p-value — 1.0 что больше, чем 0.05.
Наше заключение: разница статистически не значима
Наша интерпретация: результат соответствует гипотезе.

Мы проверили 10 яблок.
Наша гипотеза: мы ожидаем 1 гнилое яблоко.
Наш результат: мы получили 5 гнилых яблок.
Наше p-value — 0.0114 что меньше, чем 0.05.
Наше заключение: разница статистически значима
Наша интерпретация: результат не соответствует гипотезе.

Заключение

В этой статье я дал интуитивную интерпретацию общей структуры статистических погрешностей или проверки гипотез. Я надеюсь, что теперь вы лучше понимаете проверку гипотез, и чем она может быть вам полезна.

Я не уходил глубоко в математические доказательства и в специфичные детали. В таблице ниже приведен список самых частых проверок гипотез, которые я рекомендую для дальнейшего изучения.

Название тестаАльтернативная гипотезе
Тест одной выборкиЗначение пременной отлично от ожидаемого значения
Тест двух выборокЗначение двух групп различно
ANOVAЗначение больше чем двух групп различно
Пропорциональная z проверкаПроцент успеха переменной из двух возможных вариантов отлично от ожидаемого значения
Двухпропарциаоная z-проверкаПроцент успеха переменной с двумя исходами различно между двумя группами

Список с альтернативными гипотезами для некоторых проверок гипотез.

Я надеюсь эта статья будет полезна для вас, и желаю вам удачи в дальнейших исследованиях проверки гипотез.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *