какие два протокола функционируют на межсетевом уровне выберите два варианта

ИТ База знаний

Полезно

— Онлайн генератор устойчивых паролей

— Онлайн калькулятор подсетей

— Руководство администратора FreePBX на русском языке

— Руководство администратора Cisco UCM/CME на русском языке

— Руководство администратора по Linux/Unix

Навигация

Серверные решения

Телефония

FreePBX и Asterisk

Настройка программных телефонов

Корпоративные сети

Протоколы и стандарты

Протоколы сети Интернет и межсетевое экранирование

Международная организации ISO представляет свою уникальную разработку под названием OSI, которой необходимо создать базу для разработки сетевых стандартов.

Онлайн курс по Кибербезопасности

Изучи хакерский майндсет и научись защищать свою инфраструктуру! Самые важные и актуальные знания, которые помогут не только войти в ИБ, но и понять реальное положение дел в индустрии

какие два протокола функционируют на межсетевом уровне выберите два варианта. Смотреть фото какие два протокола функционируют на межсетевом уровне выберите два варианта. Смотреть картинку какие два протокола функционируют на межсетевом уровне выберите два варианта. Картинка про какие два протокола функционируют на межсетевом уровне выберите два варианта. Фото какие два протокола функционируют на межсетевом уровне выберите два варианта

какие два протокола функционируют на межсетевом уровне выберите два варианта. Смотреть фото какие два протокола функционируют на межсетевом уровне выберите два варианта. Смотреть картинку какие два протокола функционируют на межсетевом уровне выберите два варианта. Картинка про какие два протокола функционируют на межсетевом уровне выберите два варианта. Фото какие два протокола функционируют на межсетевом уровне выберите два варианта

Межсетевой экран Netfilter определяет протоколы Некоторые из них могут быть заданы только косвенно.

Протоколы сетевого уровня и межсетевое экранирование

Для формирования сквозной транспортной системы необходимо предоставить сетевой уровень (Network Layer). Он определяет маршрут передачи данных, преобразует логические адреса и имена в физические; в модели OSI (Таблица 2.1) данный уровень получает дейтаграммы, определяет маршрут и логическую адресацию, и направляет пакеты в канальный уровень, при этом сетевой уровень прибавляет свой заголовок.

Протокол IP (Internet Protocol)

Основным протоколом является IP, который имеет две версии: IPv4 и IPv6. Основные характеристики протокола IPv4:

Версия состоящее из четырех бит поле, которое содержит в себе номер версии IP протокола (4 или 6).

Тип обслуживания поле, которое состоит из 1 байта; на сегодняшний день не используется. Его заменяют на два других:

Смещение фрагмента используется в случае фрагментации пакета, поле которого равно 13 бит. Должно быть кратно 8.

«Время жизни» поле, длиной в 1 байт, значение устанавливает создающий IP-пакет узел сети, поле, состоящее из 1 байта

Транспорт поле, размером в один байт.

Доп. данные заголовка поле, которое имеет произвольную длину в зависимости от содержимого и используется для спец. задач.

Данные выравнивания. Данное поле используется для выравнивания заголовка пакета до 4 байт.

IP уникальный адрес. Адреса протокола четвёртой версии имеют длину 4 байта, а шестой 16 байт. IP адреса делятся на классы (A, B, C). Рисунок 2.2. Сети, которые получаются в результате взаимодействия данных классов, различаются допустимым количеством возможных адресов сети. Для классов A, B и C адреса распределяются между идентификатором (номером) сети и идентификатором узла сети

Протокол ICMP

Протокол сетевого уровня ICMP передает транспортную и диагностическую информацию.

Даже если атакующий компьютер посылает множество ICMP сообщений, из-за которых система примет его за 1 из машин.

Тип поле, которое содержит в себе идентификатор типа ICMP-сообщения. Оно длиною в 1 байт.

Код поле, размером в 1 байт. Включает в себя числовой идентификатор, Internet Header + 64 bits of Original Data Datagram включает в себе IP заголовок и 8 байт данных, которые могут быть частью TCP/UDP заголовка или нести информацию об ошибке.

Типы ICMP-сообщений, есть во всех версиях ОС Альт, и они подразделяются на две большие категории.

Протоколы транспортного уровня и межсетевое экранирование

При ПТУ правильная последовательность прихода данных. Основными протоколами этого уровня являются TCP и UDP.

Протокол UDP

Основные характеристики протокола UDP приведены ниже.

Последнее утверждение нельзя рассматривать как отрицательное свойство UDP. Поддержка протокола не контролирует доставку пакетов, значит передача данных быстрее, в отличие от TCP.

UDP-пакеты являются пользовательскими дейтаграммами и имеют точный размер заголовка 8 байт.

Контрольная сумма. Данная ячейка обнаруживается всею пользовательскую дейтаграмму.

В UDP контрольная сумма состоит из псевдозаголовока, заголовка и данных, поступивших от прикладного уровня.

Псевдозаголовок это часть заголовка IP-пакета, в котором дейтаграмма пользователя закодирована в поля, в которых находятся 0.

Передающее устройство может вычисляет итоговую сумму за восемь шагов:

Приемник вычисляет контрольную сумму в течение 6 шагов:

Протокол TCP

Транспортный адрес заголовка IP-сегмента равен 6 (Таблица 2.2). Протокол TCP совсем другой, в отличие от протокола UDP. UDP добавляет свой собственный адрес к данным, которые являются дейтаграммой, и прибавляет ее IP для передачи.

TCP образует виртуальное соединение между хостами, что разрешает передавать и получать данные как поток байтов.

Также добавляется заголовок перед передачей пакету СУ.

Порт источника и порт приемника поля размером по 16 бит. В нем есть номер порта службы источника.

Номер в последовательности поле размером в 32 бита, содержит в себе номер кадра TCP-пакета в последовательности.

Номер подтверждения поле длиной в 32 бита, индикатор успешно принятых предыдущих данных.

Смещение данных поле длиной в 4 бита (длина заголовка + смещение расположения данных пакета.

Биты управления поле длиной 6 бит, содержащее в себе различные флаги управления.

Контр. сумма поле размером 16 бит, содержит в себе значение всего TCP-сегмента

Указатель поле размером 16 бит, которое используется, когда устанавливается флаг URG. Индикатор количества пакетов особой важности.

Чтобы повысить пропускную функцию канала, необходим способ «скользящего окна». Необходимы только поля заголовка TCP-сегмента: «Window». Вместе с данным полем можно отправлять максимальное количество байт данных.

Классификация межсетевых экранов

Межсетевые экраны не позволяют проникнуть несанкционированным путем, даже если будет использоваться незащищенныеместа, которые есть в протоколах ТСР/IP.

Нынешние МЭ управляют потоком сетевого трафика между сетями с различными требованиями к безопасности. Есть несколько типов МЭ. Чтобы их сравнить, нужно с точностью указать все уровни модели OSI, которые он может просчитать. МЭ работают на всех уровнях модели OSI.

Пакетные фильтры

ПФ читают информацию заголовков пакетов 3-го и 4-го уровней.

ПФ применяется в таких разделай сетевой инфраструктуры, как:

Пограничные роутеры

Главным приоритетом ПФ является скорость. Также пф ограничивать доступ при DoS-атаки. Поэтому данные пф встроены в большинство роутеров.

Недостатки пакетных фильтров:

Для исходящего и входящего трафика происходит фильтрация.

МЭ анализирующие состояние сессии

Такие МЭ являются пакетными фильтрами, которые считывают сохраняемый пакет 4-го уровня OSI.

Плюсы МЭ четвертого уровня:

Прокси-сервер прикладного уровня

Если применять МЭ ПУ, тогда нам не потребуется устройство, чтобы выполнить маршрутизацию.

Прокси-сервер, анализирующий точный протокол ПУ, называется агентом прокси.

Такой МЭ имеют много преимуществ.

Плюсы прокси-сервера ПУ:

Минусы прокси-сервера ПУ:

Выделенные прокси-серверы

Эти прокси-серверы считывают трафик определенного прикладного протокола и не анализируют его полностью.

Прокси-серверы нужны для сканирования web и e-mail содержимого:

Онлайн курс по Кибербезопасности

Изучи хакерский майндсет и научись защищать свою инфраструктуру! Самые важные и актуальные знания, которые помогут не только войти в ИБ, но и понять реальное положение дел в индустрии

Источник

Описание стека протоколов OSI и TCP/IP

Физический уровень

Канальный уровень (звена передачи данных)

На этом уровне коммутационные устройства используют различные технологии: Ethernet, Token Ring, FDDI, PPP и другие.

Интернет предназначен для транспортировки любого вида информации от источника к получателю. В транспортировке информации участвуют различные элементы сети (см. рис. 1.1) – оконечные устройства, коммутационные устройства и серверы. Группы узлов при помощи коммутационных устройств объединяются в локальную сеть, локальные сети соединяются между собой шлюзами (маршрутизаторами).

Транспортный уровень

На транспортном уровне TCP/IP определяет два протокола: протокол управления передачей (TCP) и протокол пользовательских дейтаграмм (UDP).

UDP и TCP — транспортные протоколы уровня, которые отвечают за доставку сообщения от процесса (функционирующей программы) к другому процессу.

Протокол пользовательских дейтаграмм (UDP – User Datagram Protocol) — наиболее простой из двух стандартных транспортных протоколов TCP/IP. Он выполняет функции передачи между прикладными уровнями разных рабочих станций, по адресу порта, контролирует ошибки по контрольной сумме и передает информацию верхним уровням.

В конце каждой передачи TCP делит поток данных в меньшие модули, называемые сегментами. Каждый сегмент включает порядковый номер, необходимый, чтобы переупорядочить информацию после приема, и номер подтверждения для полученных сегментов. Сегменты переносятся через сеть в дейтаграммах IP. В конце получения TCP собирает каждую дейтаграмму в том виде, как она поступила, и переупорядочивает, основываясь на порядковых номерах.

Сетевой уровень

На сетевом уровне (или, более точно, межсетевом уровне) TCP/IP поддерживает протокол межсетевого взаимодействия (IP). IP, на этом (сетевом) уровне используются четыре протокола поддержки: протокол определения адреса (ARP — Address Resolution Protocol), протокол определения сетевого адреса по местоположению ( RARP – Reverse Address Resolution Protocol), протокол управляющих сообщений Internet – (ICMP — Internet Control Message Protocol ) и межсетевой протокол управления группами ( IGMP – Internet Group Message Protocol ). На этом же уровне применяются протоколы маршрутизации : протокол обмена маршрутной информацией (RIP — Routing Information Protocol), «открыть кратчайший путь первым» ( OSPF — Open Shortest Path First), протокол пограничной маршрутизации ( BGP — Border Gateway Protocol).

Протокол межсетевого взаимодействия (IP)

Протокол межсетевого взаимодействия (IP) — механизм передачи, используемый протоколами TCP/IP. Это ненадежная служба доставки дейтаграммы без установления соединения, но с «максимальными усилиями» (best- effort ).

Термин с «максимальными усилиями» означает, что делается все возможное (максимальные усилия), чтобы передать информацию к ее пункту назначения, но IP не обеспечивает никакой проверки ошибок или их отслеживания. IP предполагает ненадежность основных уровней, без гарантий требуемого уровня сервиса.

IP транспортирует данные в пакетах, называемые дейтаграммами, каждая из которых транспортируется отдельно. Дейтаграммы могут перемещаться по различным маршрутам и могут прибыть не в исходной последовательности или быть дублированы. IP не сохраняет копию маршрутов и не имеет никаких средств для того, чтобы переупорядочить дейтаграммы, как только они достигают пункта назначения.

Ограниченные функциональные возможности IP, однако, нельзя считать слабостью. IP обеспечивает «чистые» функции передачи, которые освобождены от пользовательских особенностей, и предполагает, что на других уровнях будут добавлены те средства, которые необходимы для данного приложения, и таким образом будет достигнута максимальная эффективность.

Протокол определения адресов (ARP – Address Resolution Protocol) используется, чтобы связать адрес IP с физическим адресом. На типичной физической сети, типа локальной сети LAN (Local Area Network), каждое устройство на линии связи идентифицировано физическим адресом или адресом станции, обычно закрепленным в сетевой карте интерфейса ( NIC – Network Interface Card ). ARP используются, чтобы найти физический адрес узла, когда известен его адрес в сети Интернет.

Обратный протокол определения адресов (RARP — протокол определения сетевого адреса по местоположению) позволяет хосту обнаруживать его адрес в сети Интернет, когда хост знает только свой физический адрес. Он используется, когда компьютер связывается с сетью впервые или когда компьютер загружается без диска.

Протокол управляющих сообщений Интернета (ICMP – Internet Control Message Protocol) — механизм, используемый хостами и шлюзами, чтобы передать извещение о дейтаграммных проблемах назад к передатчику.

Межсетевой протокол управления группами (IGMP – Internet Group Message Protocol) – обслуживает одновременную передачу сообщения к группе получателей.

Протокол пограничной маршрутизации (BGP — Border Gateway Protocol) — протокол маршрутизации между автономными системами, основанный на применении вектора пути.

Прикладной уровень TCP/IP

Прикладной уровень в стеке протоколов Интернета эквивалентен объединению сеансового, представительского и прикладного уровня в модели OSI. На рис. 1.3 показаны следующие протоколы прикладного уровня:

SMTP (Simple Mail Transfer Protocol) – простой почтовый протокол. Он поддерживает передачу почтовых электронных сообщений по сети Интернет. Протокол называется простым, потому что обеспечивает передачу информации пользователям, готовым к немедленной доставке. Передача осуществляется в режиме 7-битовых слов. Он требует наличия программ перехода от принятого в большинстве программ формата с 8-разрядными словами к формату с 7-разрядными словами.

Протокол передачи файлов (FTP — File Transfer Protocol) используется для передачи файлов от одного компьютера к другому. Обеспечивает просмотр каталогов удаленного компьютера, копирование, удаление и пересылку файлов. FTP отличается от других протоколов тем, что устанавливает два соединения между хостами. Одно используется для передачи информации, а другое — для управления передачей.

DNS (Domain Name System) – служба доменных имен. Она осуществляет присвоение уникальных имен всем пользователям и узлам сети Интернет и устанавливает логическую связь с их сетевыми адресами. Доменное имя представляется иерархической структурой, имеющей несколько уровней. Типовые имена доменов верхнего уровня закреплены следующим образом:

.com – коммерческие организации;
. gov – правительственные учреждения;
.org – некоммерческие организации;
.net — центры поддержки сети;
.int – международные организации;
. mil – военные структуры.

SNMP (Simple Network Management Protocol) — простой протокол управления сетью. Он обеспечивает набор фундаментальных действий по наблюдению и обслуживанию Интернета.

Протокол разработан так, чтобы он мог контролировать устройства, созданные различными изготовителями и установленные на различных физических сетях. Другими словами, SNMP освобождает задачи управления от учета физических характеристик управляемых устройств и от основной технологии организации сети.

Сетевая файловая система (NFS — Network File System). Это один из многих протоколов (например, на рисунке показан еще один протокол RPC – Remote Procedure Call – вызов удаленной процедуры), который позволяет использование файлов, содержащих процедуры управления и периферии в другом компьютере.

Тривиальный (простейший) протокол передачи файлов TFTP (Trivial File Transfer Protocol). Используется в простых случаях при начальной загрузке рабочих станций или загрузке маршрутизаторов, не имеющих внешней памяти.

Протокол передачи гипертекста (HTTP — Hyper Text Transfer Protocol) — транспортный протокол, который применяется в Интернете при обмене документами, представленными на языке описания гипертекстовых документов.

Язык разметки гипертекста (HTML — Hyper Text Markup Language). Является одним из главных языков, используемых в сети WWW.

Мировая паутина (WWW — World Wide Web) – глобальная гипертекстовая информационная система. Она объединяет огромное количество документов, хранящихся во многих странах мира и доступных через сеть узлов в сети Интернет, которые связаны между собой каналами связи.

Источник

Глава 2 Сетевые протоколы

Сетевые протоколы

Как уже упоминалось ранее, в локальных сетях могут совместно работать компьютеры разных производителей, оснащенные различным набором устройств и обладающие несхожими техническими характеристиками. На практике это означает, что для обеспечения нормального взаимодействия этих компьютеров необходим некий единый унифицированный стандарт, строго определяющий алгоритм передачи данных в распределенной вычислительной системе. В современных локальных сетях, или, как их принято называть в англоязычных странах, LAN (Local Area Network), роль такого стандарта выполняют сетевые протоколы.
Итак, сетевым протоколом, или протоколом передачи данных, называется согласованный и утвержденный стандарт, содержащий описание правил приема и передачи между несколькими компьютерами команд, файлов, иных данных, и служащий для синхронизации работы вычислительных машин в сети.
Прежде всего следует понимать, что в локальных сетях передача информации осуществляется не только между компьютерами как физическими устройствами, но и между приложениями, обеспечивающими коммуникации на программном уровне. Причем под такими приложениями можно понимать как компоненты операционной системы, организующие взаимодействие с различными устройствами компьютера, так и клиентские приложения, обеспечивающие интерфейс с пользователем. Таким образом, мы постепенно приходим к пониманию многоуровневой структуры сетевых коммуникаций — как минимум, с одной стороны мы имеем дело с аппаратной конфигурацией сети, с другой стороны — с программной.
Вместе с тем передача информации между несколькими сетевыми компьютерами — не такая уж простая задача, как это может показаться на первый взгляд. Для того чтобы понять это, достаточно представить себе тот круг проблем, который может возникнуть в процессе приема или трансляции каких-либо данных. В числе таких «неприятностей» можно перечислить аппаратный сбой либо выход из строя одного из обеспечивающих связь устройств, например, сетевой карты или концентратора, сбой прикладного или системного программного обеспечения, возникновение ошибки в самих передаваемых данных, потерю части транслируемой информации или ее искажение. Отсюда следует, что в локальной сети необходимо обеспечить жесткий контроль для отслеживания всех этих ошибок, и более того, организовать четкую работу как аппаратных, так и программных компонентов сети. Возложить все эти задачи на один-единственный протокол практически невозможно. Как быть?
Выход нашелся в разделении протоколов на ряд концептуальных уровней, каждый из которых обеспечивает интерфейс между различными модулями программного обеспечения, установленного на работающих в сети компьютерах. Таким образом, механизм передачи какого-либо пакета информации через сеть от клиентской программы, работающей на о/щом компьютере, клиентской программе, работающей на другом компьютере, можно условно представить в виде последовательной пересылки этого пакета сверху вниз от некоего протокола верхнего уровня, обеспечивающего взаимодействие с пользовательским приложением, протоколу нижнего уровня, организующему интерфейс с сетью, его трансляции на компьютер-получатель и обратной передачи протоколу верхнего уровня уже на удаленной машине (рис. 2.1).

какие два протокола функционируют на межсетевом уровне выберите два варианта. Смотреть фото какие два протокола функционируют на межсетевом уровне выберите два варианта. Смотреть картинку какие два протокола функционируют на межсетевом уровне выберите два варианта. Картинка про какие два протокола функционируют на межсетевом уровне выберите два варианта. Фото какие два протокола функционируют на межсетевом уровне выберите два варианта

Рис. 2.1. Концептуальная модель многоуровневой системы протоколов

Согласно такой схеме, каждый из уровней подобной системы обеспечивает собственный набор функций при передаче информации по локальной сети.
Например, можно предположить, что протокол верхнего уровня, осуществляющий непосредственное взаимодействие с клиентскими программами, транслирует данные протоколу более низкого уровня, «отвечающему» за работу с аппаратными устройствами сети, преобразовывая их в «понятную» для него форму. Тот, в свою очередь, передает их протоколу, осуществляющему непосредственно пересылку информации на другой компьютер. На удаленном компьютере прием данных осуществляет аналогичный протокол «нижнего» уровня и контролирует корректность принятых данных, то есть определяет, следует ли транслировать их протоколу, расположенному выше в иерархической структуре, либо запросить повторную передачу. В этом случае взаимодействие осуществляется только между протоколами нижнего уровня, верхние уровни иерархии в данном процессе не задействованы. В случае если информация была передана без искажений, она транслируется вверх через соседние уровни протоколов до тех пор, пока не достигнет программы-получателя. При этом каждый из уровней не только контролирует правильность трансляции данных на основе анализа содержимого пакета информации, но и определяет дальнейшие действия исходя из сведений о его назначении. Например, один из уровней «отвечает» за выбор устройства, с которого осуществляется получение и через которое передаются данные в сеть, другой «решает», передавать ли информацию дальше по сети, или она предназначена именно этому компьютеру, третий «выбирает» программу, которой адресована принятая информация. Подобный иерархический подход позволяет не только разделить функции между различными модулями сетевого программного обеспечения, что значительно облегчает контроль работы всей системы в целом, но и дает возможность производить коррекцию ошибок на том уровне иерархии, на котором они возникли. Каждую из подобных иерархических систем, включающих определенный набор протоколов различного уровня, принято называть стеком протоколов.
Вполне очевидно, что между теорией и практикой, то есть между концептуальной моделью стека протоколов и его практической реализацией существует значительная разница. На практике принято несколько различных вариантов дробления стека протоколов на функциональные уровни, каждый из которых выполняет свой круг задач. Мы остановимся на одном из этих вариантов, который представляется наиболее универсальным. Данная схема включает четыре функциональных уровня, и так же, как и предыдущая диаграмма, описывает не конкретный механизм работы какого-либо стека протоколов, а общую модель, которая поможет лучше понять принцип действия подобных систем (рис. 2.2).
Самый верхний в иерархической системе, прикладной уровень стека протоколов обеспечивает интерфейс с программным обеспечением, организующим
работу пользователя в сети. При запуске любой программы, для функционирования которой требуется диалог с сетью, эта программа вызывает соответствующий протокол прикладного уровня. Данный протокол передает программе информацию из сети в доступном для обработки формате, то есть в виде системных сообщений либо в виде потока байтов. В точности таким же образом пользовательские приложения могут получать потоки данных и управляющие сообщения — как от самой операционной системы, так и от других запущенных на компьютере программ. То есть, обобщая, можно сказать, что протокол прикладного уровня выступает в роли своего рода посредника между сетью и программным обеспечением, преобразуя транслируемую через сеть информацию в «понятную» программе-получателю форму.

какие два протокола функционируют на межсетевом уровне выберите два варианта. Смотреть фото какие два протокола функционируют на межсетевом уровне выберите два варианта. Смотреть картинку какие два протокола функционируют на межсетевом уровне выберите два варианта. Картинка про какие два протокола функционируют на межсетевом уровне выберите два варианта. Фото какие два протокола функционируют на межсетевом уровне выберите два варианта

Рис. 2.2. Модель реализации стека протоколов

Основная задача протоколов транспортного уровня заключается в осуществлении контроля правильности передачи данных, а также в обеспечении взаимодействия между различными сетевыми приложениями. В частности, получая входящий поток данных, протокол транспортного уровня дробит его на отдельные фрагменты, называемые пакетами, записывает в каждый пакет некоторую дополнительную информацию, например идентификатор программы, для которой предназначены передаваемые данные, и контрольную сумму, необходимую для проверки целостности пакета, и направляет их на смежный уровень для дальнейшей обработки. Помимо этого протоколы транспортного уровня осуществляют управление передачей информации — например, могут запросить у получателя подтверждение доставки пакета и повторно выслать утерянные фрагменты транслируемой последовательности данных. Некоторое недоумение может вызвать то обстоятельство, что протоколы транспортного уровня так же, как и протоколы прикладного уровня, взаимодействуют с сетевыми программами и координируют передачу данных между ними. Эту ситуацию можно прояснить на следующем примере: предположим, на подключенном к сети компьютере запущен почтовый клиент, эксплуатирующий два различных протокола прикладного уровня — РОРЗ ( Post Office Protocol) и SMTP (Simple Mail Transfer Protocol) — и программа загрузки файлов на удаленный сервер — FTP-клиент, работающий с протоколом прикладного уровня FTP (File Transfer Protocol). Все эти протоколы прикладного уровня опираются на один и тот же протокол транспортного уровня — TCP/IP (Transmission Control Protocol/Internet Protocol), который, получая поток данных от вышеуказанных программ, преобразует их в пакеты данных, где присутствует указание на конечное приложение, использующее эту информацию. Из рассмотренного нами примера следует, что данные, приходящие из сети, могут иметь различное назначение, и, соответственно, они обрабатываются различными программами, либо различными модулями одного и того же приложения. Во избежание путаницы при приеме и обработке информации каждая взаимодействующая с сетью программа имеет собственный идентификатор, который позволяет транспортному протоколу направлять данные именно тому приложению, для которого они предназначены. Такие идентификаторы носят название программных портов. В частности, протокол прикладного уровня SMTP, предназначенный для отправки сообщений электронной почты, работает обычно с портом 25, протокол входящей почты РОРЗ — с портом 110, протокол Telnet — с портом 23. Задача перенаправления потоков данных между программными портами лежит па транспортных протоколах.
На межсетевом уровне реализуется взаимодействие конкретных компьютеров распределенной вычислительной системы, другими словами, осуществляется процесс определения маршрута движения информации внутри локальной сети и выполняется отправка этой информации конкретному адресату. Данный процесс принято называть маршрутизацией. Получая пакет данных от протокола транспортного уровня вместе с запросом на его передачу и указанием получателя, протокол межсетевого уровня выясняет, на какой компьютер следует передать информацию, находится ли этот компьютер в пределах данного сегмента локальной сети или на пути к нему расположен шлюз, после чего трансформирует пакет в дейтаграмму — специальный фрагмент информации, передаваемый через сеть независимо от других аналогичных фрагментов, без образования виртуального канала (специально сконфигурированной среды для двустороннего обмена данными между несколькими устройствами) и подтверждения приема. В заголовок дейтаграммы записывается адрес компьютера-получателя пересылаемых данных и сведения о маршруте следования дейтаграммы. После чего она передается на канальный уровень.

ПРИМЕЧАНИЕ
Шлюз — это программа, при помощи которой можно передавать информацию между двумя сетевыми системами, использующими различные протоколы обмена данными.

Получая дейтаграмму, протокол межсетевого уровня определяет правильность ее приема, после чего выясняет, адресована ли она локальному компьютеру, или же ее следует направить по сети дальше. В случае, если дальнейшей пересылки не требуется, протокол межсетевого уровня удаляет заголовок дейтаграммы, вычисляет, какой из транспортных протоколов данного компьютера будет обрабатывать полученную информацию, трансформирует ее в соответствующий пакет и передает на транспортный уровень. Проиллюстрировать этот на первый взгляд сложный механизм можно простым примером. Предположим, на пеком компьютере одновременно используется два различных транспортных протокола: TCP/IP — для соединения с Интернетом и NetBEUI (NetBIOS Extended User Interface) для работы в локальной сети. В этом случае данные, обрабатываемые на транспортном уровне, будут для этих протоколов различны, однако на межсетевом уровне информация будет передаваться посредством дейтаграмм одного и того же формата.
Наконец, на канальном уровне осуществляется преобразование дейтаграмм в соответствующий сигнал, который через коммуникационное устройство транслируется по сети. В самом простом случае, когда компьютер напрямую подключен к локальной сети того или иного стандарта посредством сетевого адаптера, роль протокола канального уровня играет драйвер этого адаптера, непосредственно реализующий интерфейс с сетью. В более сложных ситуациях на канальном уровне могут работать сразу несколько специализированных протоколов, каждый из которых выполняет собственный набор функций.

Протоколы канального уровня

Протоколы, обеспечивающие взаимодействие компьютера с сетью на самом низком, аппаратном уровне, во многом определяют топологию локальной сети, а также ее внутреннюю архитектуру. В настоящее время на практике достаточно часто применяется несколько различных стандартов построения локальных сетей, наиболее распространенными среди которых являются технологии Ethernet, Token Ring, Fiber Distributed Data Interface (FDDI) и ArcNet.
На сегодняшний день локальные сети, построенные на основе стандарта Ethernet, являются наиболее популярными как в нашей стране, так и во всем мире. На долю сетей Ethernet приходится почти девяносто процентов всех малых и домашних локальных сетей, что не удивительно, поскольку именно эта технология позволяет строить простые и удобные в эксплуатации и настройке локальные сети с минимумом затрат. Именно поэтому в качестве основного рассматриваемого нами стандарта будет принята именно технология Ethernet. Протоколы канального уровня поддержки Ethernet, как правило, встроены в оборудование, обеспечивающее подключение компьютера к локальной сети на физическом уровне. Стандарт Ethernet является широковещательным, то есть каждый подключенный к сети компьютер принимает всю следующую через его сетевой сегмент информацию — как предназначенную именно для этого компьютера, так и данные, направляемые на другую машину. Во всех сетях Ethernet применяется один и тот же алгоритм разделения среды передачи информации — множественный доступ с контролем несущей и обнаружением конфликтов (Carrier Sense Multiple Access with Collision Detection, CSMA/CD).
В рамках технологии Ethernet сегодня различается несколько стандартов организации сетевых коммуникаций, определяющих пропускную способность канала связи и максимально допустимую длину одного сегмента сети, то есть расстояние между двумя подключенными к сети устройствами. Об этих стандартах мы побеседуем в следующей главе, посвященной изучению сетевого оборудования, пока же необходимо отметить, что в рамках стандарта Ethernet применяется, как правило, одна из двух различных топологий: конфигурация сети с общей шиной или звездообразная архитектура.

Протоколы межсетевого уровня

Протоколы уровня межсетевого взаимодействия, как уже упоминалось ранее, предназначены для определения маршрутов следования информации в локальной сети, приема и передачи дейтаграмм, а также для трансляции принятых данных протоколам более высокого уровня, если эти данные предназначены для обработки на локальном компьютере. К протоколам межсетевого уровня принято относить протоколы маршрутизации, такие как RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол контроля и управления передачей данных ICMP (Internet Control Message Protocol). Но вместе с тем одним из самых известных протоколов межсетевого уровня является протокол IP.

Протокол IP

Протокол IP (Internet Protocol) используется как в глобальных распределенных системах, например в сети Интернет, так и в локальных сетях. Впервые протокол IP применялся еще в сети ArpaNet, являвшейся предтечей современного Интернета, и с тех пор он уверенно удерживает позиции в качестве одного из наиболее распространенных и популярных протоколов межсетевого уровня.
Поскольку межсетевой протокол IP является универсальным стандартом, он нередко применяется в так называемых составных сетях, то есть сетях, использующих различные технологии передачи данных и соединяемых между собой посредством шлюзов. Этот же протокол «отвечает» за адресацию при передаче информации в сети. Как осуществляется эта адресация?
Каждый человек, живущий на Земле, имеет адрес, по которому его в случае необходимости можно разыскать. Думаю, ни у кого не вызовет удивления то, что каждая работающая в Интернете или локальной сети машина также имеет свой уникальный адрес. Адреса в компьютерных сетях разительно отличаются от привычных нам почтовых. Боюсь, совершенно бесполезно писать на отправляемом вами в Сеть пакете информации нечто вроде «Компьютеру Intel Pentium III 1300 Mhz, эсквайру, Пэнии-Лэйн 114, Ливерпуль, Англия». Увидев такую надпись, ваша персоналка в лучшем случае фундаментально зависнет. Но если вы укажете компьютеру в качестве адреса нечто вроде 195.85.102.14, машина вас прекрасно поймет.
Именно стандарт IP подразумевает подобную запись адресов подключенных к сети компьютеров. Такая запись носит название IP-адрес.
Из приведенного примера видно, что IP-адрес состоит из четырех десятичных идентификаторов, или октетов, по одному байту каждый, разделенных точкой. Левый октет указывает тип локальной интрасети (под термином «интрасеть» (intranet) здесь понимается частная корпоративная или домашняя локальная сеть, имеющая подключение к Интернету), в которой находится искомый компьютер. В рамках данного стандарта различается несколько подвидов интрасетей, определяемых значением первого октета. Это значение характеризует максимально возможное количество подсетей и узлов, которые может включать такая сеть. В табл. 2.1 приведено соответствие классов сетей значению первого октета IP-адреса.

Таблица 2.1. Соответствие классов сетей значению первого октета IP-адреса

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *