какие дисперсные системы называют эмульсиями
Эмульсии как дисперсные системы
Эмульсиями называются гетерогенные дисперсные системы, состоящие из взаимно нерастворимых, тонко диспергированных жидкостей, чаще всего воды и масла.
Эмульсии, как правило, стабилизированы эмульгаторами.
Основной проблемой в технологии эмульсий является их физическая стабилизация. Эмульсиям свойственна неустойчивость, как дисперсным системам с развитой поверхностью раздела фаз и обла-
Рис. 15.1. Типы эмульсий: 1 — эмульсия м/в; 2 — эмульсия в/м; 3 — множественная эмульсия в/м/в; 4 — множественная эмульсия м/в/м; дающим избытком свободной поверхностной энергии. Ш термодинамическую, или агрегативную, которая проявляется в виде коалисценции (слияния) капелек. Коалесценция протекает в две стадии: первая флокуляция (слипание), когда капельки дисперсной фазы образуют агрегаты; вторая — собственно коали- сценция, когда агрегировавшие капли соединяются в одну большую (рис. 15.2); И кинетическую, которая проявляется вследствие осаждения (седиментации) или всплывания (кремаж) частиц дисперсной фазы под влиянием силы тяжести, согласно закону Стокса; И обращение фаз (инверсия) — изменение типа эмульсии от в/м к м/в и наоборот. На инверсию влияют объемное соотношение фаз,
природа, концентрация и гидрофильно-липофильный баланс (ГЛБ) эмульгаторов, способ приготовления эмульсии. Теориям стабилизации эмульсий посвящено большое количество работ, но для фармацевтической технологии практический интерес представляют труды академика П.А.Ребиндера и его школы. Он выдвинул и разработал теорию о влиянии двух факторов на стабильность системы структурно-механического барьера и термодинамической устойчивости. При получении эмульсий резко возрастает поверхность раздела м/в и свободная межфазная энергия, что увеличивает агрегативную неустойчивость эмульсий. Однако с повышением дисперсности возрастает энтропия (превращение фаз) системы. Согласно второму закону термодинамики процессы, при которых энтропия системы возрастает, могут проходить самопроизвольно. Поэтому характер процессов, протекающих в эмульсиях (диспергирование или коале- сценция), будет зависеть от сбалансированности прироста удельной свободной межфазной энергии и энтропии. Существует некоторое граничное значение межфазного натяжения (стщ), ниже которого повышение межфазной энергии, происходящее при диспергировании капель, полностью компенсируется повышением энтропии системы. Такие эмульсии термодинамически устойчивы, диспергирование в них протекает самопроизвольно, без внешних механических сил за счет теплового движения молекул (при комнатной температуре) стт 10″4Дж/м2. В соответствии с этим все дисперсные системы были разделены на две группы: лио- фильные, ДЛЯ которых С Стщ. Лиофобные эмульсии агрегативно неустойчивы. Их стабильность следует понимать как время существования самих эмульсий. Их неустойчивость возрастает с уменьшением размеров частиц дисперсной фазы и с увеличением их числа в единице объема. Для придания агрегативной устойчивости лиофильным эмульсиям необходимо введение дополнительного стабилизирующего фактора. Практически создать такой барьер можно за счет применения высокомолекулярных вспомогательных веществ, повышающих вязкость водной среды, например, различных производных целлюлозы, альгината натрия, а также посредством введения ПАВ. Вспомогательные вещества, стабилизирующие эмульсии, называют эмульгаторами (табл. 15.1). эмульгатор | Рекомендуется для получения вязкопластичных эмульсий типа м/в | |
Эмульсионные воски | Комплексный эмульгатор | Рекомендуется для получения вязкопластичных эмульсий типа м/в |
При выборе эмульгаторов для фармацевтических эмульсий рекомендуется учитывать механизм их стабилизации, токсичность, величину pH, химическую совместимость с лекарственными веществами.
Для приготовления эмульсий надо использовать эмульгаторы, не обладающие неприятным вкусом, что ограничивает применение большинства синтетических ПАВ. Эмульгаторы, используемые для получения парентеральных эмульсий, не должны обладать гемолитическими свойствами.
Для стабилизации эмульсий эмульгаторы используют в широком диапазоне концентраций (0,1-25%).
По способности стабилизировать эмульсии м/в или в/м их можно разделить на эмульгаторы первого (м/в) и второго (в/м) рода. По химической природе эмульгаторы делятся на три класса: вещества с дифильным строением молекул, высокомолекулярные соединения, неорганические вещества. По способу получения выделяют синтетические, полусинтетические и природные (животного и растительного происхождения) эмульгаторы. Их можно разделить также на низкомолекулярные и высокомолекулярные. К высокомолекулярным относят желатин, белки, поливиниловые спирты, полисахариды растительного и микробного происхождения и др. На поверхности раздела фаз они образуют трехмерную сетку с определенными параметрами и стабилизируют эмульсии за счет создания структурно-механического барьера в объеме дисперсионной среды.
Наибольшее значение в качестве эмульгаторов имеют низкомолекулярные ПАВ. По способности к ионизации в воде их можно разделить на четыре класса: анионные, катионные, неионогенные и амфолитные.
Анионные ПАВ содержат в молекуле полярные группы и диссоциируют в воде с образованием отрицательно заряженных длинноцепочечных органических ионов, определяющих их поверхностную активность. Из анионных ПАВ для стабилизации фармацевтических эмульсий рекомендуются как наиболее перспективные мыла (соли высших жирных кислот) и натриевые соли сульфоэфиров высших жирных спиртов, например натрия лаурилсульфат. Свойства анионных ПАВ зависят от природы катиона. Натриевые, аммониевые и триэтаноламиновые соли растворимы в воде и служат эмульгаторами м/в, а мыла с такими катионами, как кальций, магний, алюминий и железо в воде не растворимы и являются эмульгаторами в/м.
Катионные ПАВ диссоциируют в воде с образованием положительно заряженных органических ионов, определяющих их поверхностную активность. Катионоактивные ПАВ, особенно соли четвертичных аммониевых и пиридиниевых соединений, обладают сильным бактерицидным действием. Их рекомендуется включать в лекарственные препараты в качестве консервантов и антисептиков. Наибольшее применение в фармации из этого класса ПАВ нашли бензалконий хлорид, цетилпиридиний хлорид, этоний.
Неионогенные ПАВ не образуют ионов. Растворимость их в воде определяется наличием полярных групп с сильным сродством к воде. К этому классу ПАВ относятся высшие жирные спирты и кислоты, сложные эфиры гликолей и жирных кислот, спены (эфиры высших жирных кислот и сорбита). Наиболее распространены такие неионогенные эмульгаторы м/в, как полиоксиэтиленгликолевые эфиры высших жирных спиртов, кислот и спенов. К неионогенным ПАВ относятся также жиросахара, которые в зависимости от строения молекул могут выполнять роль эмульгаторов с образованием эмульсий типа м/в или в/м.
Среди синтетических ПАВ менее токсичны неионогенные ПАВ, а катионные — самые токсичные; анионные ПАВ в целом занимают между ними промежуточное положение.
Амфолитные ПАВ содержат несколько полярных групп; в воде в зависимости от pH они могут ионизироваться с образованием либо длинноцепочечных анионов, либо катионов, что придает им свойства анионных или катионных ПАВ. Амфолитные ПАВ обычно содержат одновременно аминогруппу с сульфоэфирной, карбоксильной или сульфонатной группами. Типичными представителями этого класса ПАВ являются бетаин и лецитин.
ПАВ содержат в молекуле гидрофильные и гидрофобные группы, т.е. обладают дифильным строением. Полярная (гидрофильная) группа — это функциональная группа с дипольным моментом, имеющая сродство к полярным средам и обусловливающая растворимость ПАВ в воде.
При попадании ПАВ в воду полярные группы сольватируются, а неполярные алкильные цепи окружаются льдоподобной структурой воды. Изменение структуры воды в сторону увеличения ее кристалличности приводит к уменьшению энтропии системы.
Свойства ПАВ зависят не только от общей величины гидрофильной и липофильной частей их молекул, но и от соотношения частей между ними, которое выражается через ГЛБ. ГЛБ был введен для
Групповые числа ГЛБ поверхностно-активных веществ
|
характеристики неионогенных ПАВ (продуктов присоединения окиси этилена) и показывает для них 1/5 массового процентного содержания гидрофильной части в молекуле. ГЛБ 0 имеют неионные полностью липофильные вещества, а ГЛБ 20 присущ неионным полностью гидрофильным продуктам, например ПЭО. ПАВ с различной степенью оксиэтилирования имеют промежуточные значения ГЛБ, которые могут бьггь вычислены по формуле: ГЛБ = Е/5, где Е — процентное массовое содержание гидрофильной части.
Величина ГЛБ тесно связана со свойствами ПАВ и областью их применения. ПАВ с ГЛБ 1,5-3 — пеногасители, 3-6 — эмульгаторы в/м, 7-9 — смачиватели, 8-18 — эмульгаторы м/в, 13-15 — пенообразователи, 15-18 — солюбилизаторы.
Все методы определения ГЛБ можно разделить на расчетные, базирующиеся на молекулярной структуре ПАВ, и экспериментальные, основанные на измерении каких-либо свойств ПАВ, связанных с их ГЛБ, позволяющих его вычислить.
Из расчетных методов рекомендуется метод Дэвиса, согласно которому различные функциональные группы и сочетания атомов, входящие в молекулы ПАВ, имеют определенные гидрофильные коэффициенты “групповые числа” (табл. 15.2). Они положительны для гидрофильных групп и отрицательны для липофильных.
Система ГЛБ рекомендуется для оценки области применения ПАВ, их возможных свойств и организации поиска оптимальных эмульгирующих смесей. Суммарный ГЛБ смеси ПАВ рассчитывают по формуле
ГЛБ смеси ПАВ = XI • ГЛБі + хг • ГЛБг/ЮО,
где XI, хг — процентное содержание первого и второго ПАВ в смеси.
По системе ГЛБ для выбора оптимального состава эмульгирующей смеси рекомендуется использовать два ПАВ, одно из них с высоким значением ГЛБ — эмульгатор м/в, а другое с низкой величиной ГЛБ — эмульгатор в/м. Готовится ряд эмульсий, в котором при одинаковом содержании масляной фазы и суммарной концентрации двух эмульгаторов варьируется соотношение ПАВ, выражаемое через суммарную величину ГЛБ их смеси. При этом свойства эмульсий в ряду и их стабильность зависят от величины ГЛБ и строения молекул эмульгаторов.
Для получения стабильных эмульсий со сроком годности два года и более рекомендуется применять ПАВ, содержащие алкильные цепочки не менее чем с 16-18 атомами углерода. При этом необходимо соответствие длины алкильных радикалов эмульгаторов м/в и в/м.
Сильный стабилизирующий эффект при использовании двух эмульгаторов м/в и в/м вызван формированием в эмульсиях из молекул лиотропных жидких кристаллов.
Жидкокристаллическим (мезоморфным) называется такое состояние веществ, когда оно обладает структурными свойствами, промежуточными между свойствами твердого кристалла и жидкости. В кристаллах упорядочено как положение, так и ориентация молекул. В жидких кристаллах остается упорядоченной ориентация молекул, но отсутствует корреляция их положений. Молекулы могут взаимно перемещаться, но в мезофазах сохраняется анизотропия (характеризующая различие физических свойств по разным направлениям).
Если использовать одно гидрофильное ПАВ, то мезофазы образуются при достаточно высоких его концентрациях (свыше 30-50%), что мало приемлемо в технологии лекарств. Поэтому рекомендуется в систему с эмульгатором м/в ввести липофильный эмульгатор в/м. Они образуют совместные ассоциаты, в которых плотность упаковки алкильных цепей и анизотропия резко возрастают и увеличиваются с уменьшением суммарного ГЛБ ПАВ, т.е. с понижением ГЛБ возрастает тенденция к образованию жидкокристаллических ассо- циатов, которые при достаточной концентрации образуют в объеме дисперсионной среды эмульсий м/в пространственную сетку. Причем эта концентрация гораздо меньше, чем таковая при использовании только одного гидрофильного ПАВ.
Явление критического ГЛБ представляет собой частный случай образования на поверхности масляных глобул жидкокристаллического молекулярного слоя ПАВ, отделяющего их от водного окружения. Адсорбционный слой при этом является мезофазой, сложенной в глобулярную структуру, которая возможна только при определенных соотношениях ПАВ и при условии высокого ГЛБ эмульгатора в/м.
В лиофобные вязкопластичные эмульсии типа м/в рекомендуется включать в концентрациях 10-50% полярные гидрофильные растворители: пропиленгликоль, ПЭО-400, глицерин и др. Они разрыхляют мезофазы, уменьшая плотность упаковки молекул ПАВ. В результате объем, занимаемый мезофазой, увеличивается и структурная вязкость лиофобных вязкопластических эмульсий возрастает. В случае же эмульсий при критическом ГЛБ эти растворители рекомендуется включать в концентрации не более 10%. Уменьшение плотности упаковки адсорбционного слоя приводит к снижению критического ГЛБ, понижению сольватации, разрыву жидкокристаллического адсорбционного слоя и дестабилизации эмульсий. Гидрофобные растворители не только повышают структурную вязкость, но и понижают высыхание эмульсий м/в, увеличивают их термостабильность, снижают температуру кристаллизации дисперсионной среды. Дестабилизирующий эффект возрастает с увеличением неполярной части растворителя.
Способность эмульгаторов м/в стабилизировать эмульсии первого рода в смеси с высшими жирными спиртами за счет создания структурно-механического барьера была использована при создании таких эмульгаторов, как эмульсионные воски, представляющие собой сплав спиртов синтетических жирных первичных фракций С16-С21 с калиевыми солями фосфорнокислых эфиров указанных спиртов, а также эмульгатор №1 — сплав спиртов фракции С16-С21 с натриевыми солями сульфоэфиров этих же спиртов в соотношении примерно 30:70. Эти эмульгаторы рекомендуются для стабилизации эмульсионных мазей, кремов, пенообразующих аэрозолей. Однако они имеют ряд недостатков: при их получении не удается добиться строго определенного соотношения между спиртами и гидрофильными ПАВ, это соотношение не всегда оптимально для различных масляных фаз и эмульсий с различными лекарственными веществами; анионоактивные ПАВ несовместимы со многими лекарственными веществами. Поэтому при разработке фармацевтических эмульсий рациональнее пользоваться двумя эмульгаторами м/в и в/м, подбирая для них нужное соотношение и концентрацию применительно к конкретному лекарственному препарату. Причем, чем длиннее алкильные цепи эмульгаторов, тем больше вязкость и стабильность эмульсий м/в.
Кроме природы эмульгаторов, на стабильность эмульсий влияет ряд других факторов. В первую очередь, это природа дисперсионной среды и масляной фазы. Природа и полярность масляной фазы влияет на эмульгирующую способность ПАВ и стабильность эмульсий. Так, эмульсии, д исперсная фаза которых состоит из д линноцепочечных алканов или хотя бы содержит их в небольшом количестве, более устойчивы, чем эмульсии, содержащие короткоцепочечные алканы. Эмульсии с растительными телами менее стабильны, чем с минеральными.
Соотношение между маслом, водой и ПАВ сильно влияет на свойства эмульсий: их тип, реологические параметры и стабильность. При определенных соотношениях между ингредиентами эмульсий образуются так называемые микроэмульсии. Это прозрачные системы, содержащие сферические агрегаты масла или воды, диспергированные в другой жидкости и стабилизированные поверхностным натяжением пленок ПАВ, причем диаметры капель находятся в интервале от 10 до 200 нм. Микроэмульсии в отличие от обычных эмульсий являются термодинамическими стабильными системами и могут храниться годами без расслоения.
На стабильность эмульсий м/в влияет способ их приготовления. Для повышения их стабильности рекомендуется метод инверсии фаз. Оба эмульгатора при 70-75°С сплавляют с масляной фазой, добавляют часть горячей воды и эмульгируют, получая при этом эмульсию в/м. Затем приливают остальную воду, происходит инверсия фаз; эмульгирование продолжают, охлаждая эмульсию до 25°С.
Из технологических приемов, влияющих на структурно-механические параметры лиофобных вязкопластичных эмульсий, можно рекомендовать способ введения эмульгаторов. Наиболее вязкие и структурированные эмульсии получаются при д испергировании эмульгатора м/в и высших жирных спиртов в водной среде при 70-75°С с последующим введением масляной фазы при 60°С, эмульгированием и охлаждением эмульсии при перемешивании до 20-25°С.
Х и м и я
Коллоидная химия
Дисперсные системы. Определение. Классификация.
Растворы
В предыдущем параграфе мы говорили о растворах. Здесь коротко напомним об этом понятии.
Растворами называют однородные (гомогенные) системы, состоящие из двух и более компонентов.
Гомогенная система – это однородная система, химический состав и физические свойства которой во всех частях одинаковы или меняются непрерывно, без скачков (между частями системы нет поверхностей раздела).
Такое определение раствора не вполне корректно. Оно скорее относится к истинным растворам.
В тоже время существуют ещё коллоидные растворы, которые являются не гомогенными, а гетерогенными, т.е. состоят из разных фаз, разделённых поверхностью раздела.
Для того чтобы достичь большей чёткости в определениях используют другой термин – дисперсные системы.
Перед рассмотрением дисперсных систем немного расскажем об истории их изучения и о появления такого термина как коллоидные растворы.
История вопроса
Ещё в 1845 г. химик Франческо Сельми, исследуя свойства различных растворов, заметил, что биологические жидкости – сыворотка и плазма крови, лимфа и другие – резко отличаются по своим свойствам от обычных истинных растворов, и поэтому такие жидкости были им названы псевдорастворами.
Коллоиды и кристаллоиды
Дальнейшие исследования в этом направлении, проводившиеся с 1861 г. английским учёным Томасом Грэмом, показали, что одни вещества, быстро диффундирующие и проходящие через растительные и животные мембраны, легко кристаллизуются, другие же обладают малой способностью к диффузии, не проходят через мембраны и не кристаллизуются, а образуют аморфные осадки.
Первые Грэм назвал кристаллоидами, а вторые – коллоидами (от греческого слова kolla – клей и eidos – вид) или клееподобными веществами.
В частности, было выявлено, что вещества, способные к образованию аморфных осадков, как, например, альбумин, желатин, гуммиарабик, гидроокиси железа и алюминия и некоторые другие вещества, диффундируют в воде медленно по сравнению со скоростью диффузии таких кристаллических веществ, как поваренная соль, сернокислый магний, тростниковый сахар и др.
В таблице ниже приведены коэффициенты диффузии D для некоторых кристаллоидов и коллоидов при 18С.
Кристаллоиды
Молекулярный вес
D·10 7 см 2 /сек
Коллоиды
Молекулярный вес
D·10 7 см 2 /сек
Из таблицы видно, что между молекулярным весом и коэффициентом диффузии существует обратная зависимость.
Кромме того у кристаллоидов была обнаружена способность не только быстро диффундировать, но и диализироваться, т.е. проходить через мембранны, в противоположность коллоидам, имеющим больший размер молекул и поэтому медленно диффундирующим и не проникающим через мембраны.
В качестве мембран используют стенки бычьего пузыря, целлофан, плёнки из железисто-синеродистой меди и т.д.
На основании сделанных наблюдений Грэм установил, что все вещества могут быть подразделены на кристаллоиды и коллоиды.
Русские не согласны
Против такого строго разделения химических веществ возражал профессор Киевского университета И.Г. Борщёв (1869). Мнение Борщёва позднее было подтвеждено исследованиями другого русского учёного Веймарна, который доказал, что одно и то же вещество в зависимости от условий может проявлять свойства коллоидов или кристаллоидов.
Так, например, раствор мыла в воде обладает свойствами коллоида, а мыло, растворённое в спирте, проявляет свойства истинных растворов.
Точно также кристаллические соли, например, поваренная соль, растворённая в воде, даёт истинный раствор, а в бензоле – коллоидный раствор и т.п.
Гемоглобин же или яичный альбумин, обладающие свойствами коллоидов, могут быть получены в кристаллическом состоянии.
Д.И. Менделеев полагал, что любое вещество, в зависимости от условий и природы среды, может проявлять свойства коллоида. В настоящее время любое вещество можно получить в коллоидном состоянии.
Таким образом, нет оснований подразделять вещества на два обособленных класса – на кристаллоиды и коллоиды, а можно говорить о коллоидном и кристаллоидном состоянии вещества.
Под коллоидным состоянием вещества подразумевается определённая степень его раздробленности или дисперсности и нахождении коллоидных частиц во взвешенном состоянии в растворителе.
Наука, изучающая физико-химические свойства гетерогенных высокодисперсных и высокомолекулярных систем называется коллоидной химией.
Дисперсные системы
Если одно вещество, находящееся в раздробленном (диспергированном) состоянии, равномерно распределено в массе другого вещества, то такую систему называют дисперсной.
Так, например, система, представляющая собой взмученную глину в воде, состоит из взвешенных мелких частиц глины – дисперсной фазы и воды – дисперсионной среды.
Дисперсные (раздробленные) системы являются гетерогенными.
Дисперсные системы, в отличие от гетерогенных с относительно крупными, сплошными фазами, называют микрогетерогенными, а коллоиднодисперсные системы называют ультрамикрогетерогенными.
Классификация дисперсных систем
Классификацию дисперсных систем чаще всего производят исходя из степени дисперсности или агрегатного состояния дисперсной фазы и дисперсионной среды.
Классификация по степени дисперсности
Все дисперсные системы по величине частиц дисперсной фазы можно разделить на следующие группы:
Вид дисперсности
Размер частиц
Микроскопическая дисперсность (суспензии, эмульсии)
Эти системы содержат в качестве дисперсной фазы наиболее крупные частицы диаметром от 0,1 мк и выше. К этим системам относятся суспензии и эмульсии.
Суспензиями называют системы, в которых твёрдое вещество находится в жидкой дисперсионной среде, например, взвесь крахмала, глины и др. в воде.
Эмульсиями называют дисперсионные системы двух несмешивающихся жидкостей, где капельки одной жидкости во взвешенном состоянии распределены в объёме другой жидкости. Например, масло, бензол, толуол в воде или капельки жира (диаметром от 0,1 до 22 мк) в молоке и др.
Коллоидные частицы при наличии у них электрического заряда и сольватно-ионных оболочек остаются во взвешенном состоянии и без изменения условий очень долго могут не выпадать в осадок.
Примерами коллоидных систем могут служить растворы альбумина, желатина, гуммиарабика, коллоидные растворы золота, серебра, сернистого мышьяка и др.
Такие системы имеют размеры частиц, не превышающие 1ммк. К молекулярно-дисперсным системам относятся истинные растворы неэлектролитов.
Размеры некоторых молекул, частиц, клеток.
Объект
Размеры (ммк)
Частицы коллоидного золота
По мере изменения размеров частиц от наиболее крупных к мелким и обратно будут соответственно меняться и свойства дисперсных систем. При этом коллоидные системы занимают как бы промежуточное положение между грубыми взвесями и молекулярно-дисперсными системами.
Классификация по агрегатному состоянию дисперсной фазы и дисперсионной среды.
Пены – это дисперсия газа в жидкости, причём в пенах жидкость вырождается до тонких плёнок, разделяющих отдельные пузырьки газа.
Эмульсиями называют дисперсные системы, в которых одна жидкость раздроблена другой, нерастворяющей её жидкостью (например вода в жире).
Суспензиями называют низкодисперсные системы твёрдых частиц в жидкостях.
Сочетания трех видов агрегатного состояния позволяют выделить девять видов дисперсных систем:
Дисперсная фаза
Дисперсионная среда
Название и пример
Дисперсная система не образуется
Газовые эмульсии и пены
Пористые тела: поролон пемза
Аэрозоли: туманы, облака
Эмульсии: нефть, крем, молоко, маргарин, масло
Капилярные системы: Жидкость в пористых телах, грунт, почва
Аэрозоли (пыли, дымы), поршки
Суспензии: пульпа, ил, взвесь, паста
Твёрдые системы: сплавы, бетон
Золи – другое название коллоидных растворов.
Коллоидные растворы иначе называют золями (от латинского solutus – растворённый).
Дисперсные системы с газообразной дисперсионной средой называют аэрозолями. Туманы представляют собой аэрозоли с жидкой дисперсной фазой, а пыль и дым – аэрозоли с твёрдой дисперсной фазой. Дым более высокодисперсная система, чем пыль.
Дисперсные системы с жидкой дисперсионной средой называют лизолями (от греческого «лиос» – жидкость).
В зависимости от растворителя (дисперсионной среды), т.е. воды, спирта бензола или эфира и т.д., различают гидрозоли, алкозоли, бензоли, этерозоли и т.д.
Связнодисперсные системы. Гели.
Дисперсные системы могут быть свободнодисперсными и связнодисперсными в зависимости от отсутствия или наличия взаимодействия между частицами дисперсной фазы.
К свободнодисперсным системам относятся аэрозоли, лизоли, разбавленные суспензии и эмульсии. Они текучи. В этих системах частицы дисперсной фазы не имеют контактов, участвуют в беспорядочном тепловом движении, свободно перемещаются под действием силы тяжести.
Связнодисперсные системы – твердообразны. Они возникают при контакте частиц дисперсной фазы, приводящем к образованию структуры в виде каркаса или сетки.
Такая структура ограничивает текучесть дисперсной системы и придаёт ей способность сохранять форму. Подобные структурированные коллоидные системы называются гелями.
Переход золя в гель, происходящий в результате понижения устойчивости золя, называют гелеобразованием (или желатинированием).
Порошки (пасты), пены – примеры связнодисперсных систем.
Почва, образовавшаяся в результате контакта и уплотнения дисперсных частиц почвенных минералов и гумусовых (органических) веществ, также представляет собой связнодисперсную систему.
Сплошную массу вещества могут пронизывать поры и капиляры, образующие капилярнодисперсные системы. К ним относятся, например, древесина, кожа, бумага, картон, ткани.
Лиофильность и лиофобность
Общей характеристикой коллоидных растворов является свойство их дисперсной фазы взаимодействовать с дисперсионной средой. В этом отношении различают два типа золей:
1. Лиофобные (от греческого phobia – ненависть) и
2. Лиофильные (от греческого philia – любовь).
У лиофобных золей частицы не имеют сродства к растворителю, слабо с ним взаимодействуют и образуют вокруг себя тонкую оболочку из молекул растворителя.
В частности, если дисперсионной средой является вода, то такие системы называются гидрофобными, например, золи металлов железа, золота, сернистого мышьяка, хлористого серебра и т.д.
В лиофильных системах между диспергированным веществом и растворителем имеется сродство. Частицы дисперсной фазы, в этом случае, приобретают более объёмную оболочку из молекул растворителя.
В случае водной дисперсионной среды такие системы называются гидрофильными, как, например, растворы белка, крахмала, агар-агара, гуммиарабика и др.
Коагуляция коллоидов. Стабилизаторы.
Вещество на границе раздела фаз.
Все жидкости и твёрдые тела ограничены внешней поверхностью, на которой они соприкасаются с фазами другого состава и структуры, например, с паром, другой жидкостью или твёрдым телом.
Свойства вещества в этой межфазовой поверхности, толщиной в несколько поперечников атомов или молекул, отличаются от свойств внутри объёма фазы.
Внутри объёма чистого вещества в твёрдом, жидком или газообразном состоянии любая молекула окружена себе подобными молекулами.
В пограничном слое молекулы находятся во взаимодействии или с другим числом молекул (другим в сравнении с взаимодействием внутри объёма вещества).
Это происходит, например, на границе жидкости или твёрдого тела с их паром. Либо в пограничном слое молекулы вещества взаимодействуют с молекулами другой химической природы, например, на границе двух взаимно малорастворимых жидкостей.
В результате различия в характере взаимодействия внутри объёма фаз и на границе фаз возникают силовые поля, связанные с этой неравномерностью. (Подробнее об этом в параграфе Поверхностное натяжение жидкости.)
Чем больше различие в напряжённости межмолекулярных сил, действующих в каждой из фаз, тем больше потенциальная энергия межфазовой поверхности, кратко называемой поверхностной энергией.
Коагуляция коллоидов
Все самопроизвольные процессы происходят в направлении уменьшения энергии системы (изобарного потенциала).
Аналогично, на границе раздела фаз самопроизвольно происходят процессы в направлении уменьшения свободной поверхностной энергии.
Свободная энергия тем меньше, чем меньше поверхность раздела фаз.
А поверхность раздела фаз, в свою очередь, связана со степенью дисперсности растворённого вещества. Чем выше дисперсность (мельче частицы дисперсной фазы), тем больше поверхность раздела фаз.
Таким образом, в дисперсных системах всегда существуют силы, приводящие к уменьшению суммарной поверхности раздела фаз, т.е. к укрупнению частиц. Поэтому происходит слияние мелких капель в туманах, дождевых облаках и эмульсиях – агрегация высокодисперсных частиц в более крупные образования.
Всё это приводит к разрушению дисперсных систем: туманы и дождевые облака проливаются дождём, эмульсии расслаиваются, коллоидные растворы коагулируют, т.е. разделяются на осадок дисперсной фазы (коагулят) и дисперсионную среду или в случае вытянутых частиц дисперсной фазы, превращаются в гель.
Способность раздробленных систем сохранять присущую им степень дисперсности называется агрегативной устойчивостью.
Стабилизаторы дисперсных систем
Как было сказано ранее, дисперсные системы принципиально термодинамически неустойчивы. Чем выше дисперсность, тем больше свободная поверхностная энергия, тем больше склонность к самопроизвольному уменьшению дисперсности.
Поэтому для получения устойчивых, т.е. длительно сохраняющихся суспензий, эмульсий, коллоидных растворов, необходимо не только достигнуть заданной дисперсности, но и создать условия для её стабилизации.
Ввиду этого устойчивые дисперсные системы состоят не менее чем из трёх компонентов: дисперсной фазы, дисперсионной среды и третьего компонента – стабилизатора дисперсной системы.
Стабилизатор может иметь как ионную, так и молекулярную, часто высокомолекулярную, природу.
Ионная стабилизация золей лиофобных коллоидов связана с присутствием малых концентраций электролитов, создающих ионные пограничные слои между дисперсной фазой и дисперсионной средой.
Высокомолекулярные соединения (белки, полипептиды, поливиниловый спирт и другие), добавляемые для стабилизации дисперсных систем, называют защитными коллоидами.
Адсорбируясь на границе раздела фаз, они образуют в поверхностном слое сетчатые и гелеобразные структуры, создающие структурно-механический барьер, который препятствует объединению частиц дисперсной фазы.
Структурно-механическая стабилизация имеет решающее значение для стабилизации взвесей, паст, пен, концентрированных эмульсий.