какие действия определяют знаки логических связок

Какие действия определяют знаки логических связок

2) Логическое сложение или дизъюнкция:

Таблица истинности для дизъюнкции

ABF
111
101
011
000

3) Логическое отрицание или инверсия:

Таблица истинности для инверсии

A¬ А
10
01

4) Логическое следование или импликация:

«A → B» истинно, если из А может следовать B.

Обозначение: F = A → B.

Таблица истинности для импликации

ABF
111
100
011
001

5) Логическая равнозначность или эквивалентность:

Источник

Какие действия определяют знаки логических связок

какие действия определяют знаки логических связок. Смотреть фото какие действия определяют знаки логических связок. Смотреть картинку какие действия определяют знаки логических связок. Картинка про какие действия определяют знаки логических связок. Фото какие действия определяют знаки логических связок

§ 2. Логические операции. Формализация высказываний

Сейчас мы познакомимся с шестью основными логическими операциями. Каждая из них имеет несколько названий и обозначений.

Названия операции

Возможные обозначения

Конъюнкция, логическое умножение, операция И, операция AND.

`&, ^^, *,` по аналогии с алгебраическим умножением может никак не обозначаться

Дизъюнкция, нестрогая дизъюнкция, логическое сложение, операция ИЛИ, операция OR.

Строгая дизъюнкция, разделительная дизъюнкция, исключающее ИЛИ, сложение по модулю `2`.

Эквивалентность, эквиваленция, равенство, равнозначность.

Импликация, следование, следствие

Теперь для того чтобы строго определить эти логические операции, нам нужно для каждой из них выписать таблицу истинности. Все перечисленные операции кроме отрицания имеют два операнда. Знак операции в выражениях пишется между операндами (как в алгебре чисел). Операция отрицания имеет один операнд и в выражениях записывается либо в виде черты над операндом, либо в виде символа «приставка» слева от операнда.

1) `p` и `q` ложны. Это значит, что четырёхугольник не является квадратом и его стороны не равны. Это возможная ситуация.

2) `p` – ложно, `q` – истинно. Это значит, что четырёхугольник не является квадратом, но стороны у него равны. Это возможно (ромб).

3) `p` – истинно, `q` – истинно. Это значит, что четырёхугольник является квадратом и стороны у него равны. Это возможная ситуация.

4) `p` – истинно, `q` – ложно. Это значит, что четырёхугольник является квадратом, но стороны у него не равны. Это невозможная ситуация.

Очень часто вместо «присвоим логическим переменным эти высказывания» говорят «обозначим высказывания следующим образом». В дальнейшем мы тоже будем использовать этот речевой оборот.

Источник

Логические операции. ➞ Что такое конъюнкция, дизъюнкция, импликация

Тот, кто хочет подробно разбираться в цифровых технологиях должен понимать основы такой темы, как алгебра логики. В этой статье будут разобраны основные определения, а также показаны самые важные логические операции, такие как конъюнкция, дизъюнкция, импликация и т.д.

Основные положения

Для начала следует разобраться, для чего нужна алгебра логики – главным образом, этот раздел математики и информатики, нужен для работы с логическими выражениями и высказываниями.

Логическим высказыванием называется утверждение (или запись), которое мы можем однозначно классифицировать, как истинное или ложное (1 или 0 в информатике).

Примером таким высказываний будут являться:

Логические высказывания делятся на два типа — простые и сложные.

В алгебре логики, как простые, так и сложные высказываниями описываются булевыми выражениями.

Булево выражение – это символическое (знаковое) описание высказывания.

Операции

Ниже рассмотрим основные операции, которые применяются в булевой алгебре. Их хватит, чтобы упростить львиную долю всех выражений, которые Вам встретятся.

Конъюнкция

Конъюнкция (булево умножение) — функция, по своему смыслу приближенная к союзу «И». При выполнении конъюнкции результат истинен (равен 1) тогда и только тогда, когда истинны ВСЕ переменные. Если хотя бы одно из высказываний ложно, то ложно и всё выражение (равно 0).

Функция может работать как с двумя операндами (высказываниями), так и с тремя, четырьмя и т.д. В математике обозначается с помощью знаков ​\( \wedge \) и &. Обозначение в языках программирования AND, &&. Таблица истинности для двух операндов:

какие действия определяют знаки логических связок. Смотреть фото какие действия определяют знаки логических связок. Смотреть картинку какие действия определяют знаки логических связок. Картинка про какие действия определяют знаки логических связок. Фото какие действия определяют знаки логических связок

Дизъюнкция

Дизъюнкцией называется функция булева сложения. По смыслу дизъюнкция приближена к союзу «ИЛИ». В результате выполнения данной функции результирующие выражение является истинным, когда хотя бы одно из высказываний в этом выражении тоже истинно.

Булево сложение, также как и умножение, может работать с произвольным количеством операндов. В математике обозначается как V, а в программировании с помощью OR или I.

какие действия определяют знаки логических связок. Смотреть фото какие действия определяют знаки логических связок. Смотреть картинку какие действия определяют знаки логических связок. Картинка про какие действия определяют знаки логических связок. Фото какие действия определяют знаки логических связок

Инверсия

Логическое отрицание – функция, работающая с одним высказыванием, и заменяющая истину на ложь, а ложь на истину. В математике обозначается с помощью черты над значением, а в программирование и информатике с помощью слова NOT.

какие действия определяют знаки логических связок. Смотреть фото какие действия определяют знаки логических связок. Смотреть картинку какие действия определяют знаки логических связок. Картинка про какие действия определяют знаки логических связок. Фото какие действия определяют знаки логических связок

Импликация

Также называется булевым следованием. В русском языке данной функции соответствует оборот «Если …, то …». Например, если на улице гремит, то стоит пасмурная погода.

какие действия определяют знаки логических связок. Смотреть фото какие действия определяют знаки логических связок. Смотреть картинку какие действия определяют знаки логических связок. Картинка про какие действия определяют знаки логических связок. Фото какие действия определяют знаки логических связок

Эквивалентность

Булева тождественность или равенство. На простом языке будет обозначено как «… эквивалентно (равно) …». Результат будет истинным тогда, когда все значения в выражении будут иметь одинаковую истинность.

Обозначается с помощью трех черточек или ⟺.

какие действия определяют знаки логических связок. Смотреть фото какие действия определяют знаки логических связок. Смотреть картинку какие действия определяют знаки логических связок. Картинка про какие действия определяют знаки логических связок. Фото какие действия определяют знаки логических связок

Порядок выполнения операций

Логические операции выполняются в следующем порядке:

Если в формуле указаны скобки, то порядок выполнения действий в скобках точно такой же, как написано выше.

Пример

Дано два отрезка B = [2,10], C = [6,14]. Из предложенных вариантов ответа выберите такой отрезок A, что формула \( ((z \in A) \Longrightarrow (z \in B)) \vee (z \in C) \) истинна при любом значении z. Варианты ответа:

Решение: Подставим в уравнение \( ((z \in A) \Longrightarrow (z \in B)) \vee (z \in C) \) =1 значения B и C и составим таблицу истинности:

Получившаяся формула \( ((z \in A) \Longrightarrow (z \in [2,10])) \vee (z \in [6,14])=1 \). По условию ​​​\( z \in A \)=1.

Таблица истинности для всех отрезков:

какие действия определяют знаки логических связок. Смотреть фото какие действия определяют знаки логических связок. Смотреть картинку какие действия определяют знаки логических связок. Картинка про какие действия определяют знаки логических связок. Фото какие действия определяют знаки логических связок

Ответ: A = [3,11].

Заключение

Вот Вы и познакомились с основными логическими операциями и понятиями и знаете, что такое булево сложение и умножение. Если вас заинтересовала данная тема, то можете изучить булевы законы. Эти законы не проходятся в рамках школьной программы и служат для упрощения сложных выражений.

Источник

Какие действия определяют знаки логических связок

какие действия определяют знаки логических связок. Смотреть фото какие действия определяют знаки логических связок. Смотреть картинку какие действия определяют знаки логических связок. Картинка про какие действия определяют знаки логических связок. Фото какие действия определяют знаки логических связок Тема 3. Основы математической логики 1. Логические выражения и логические операции.
2. Построение таблиц истинности и логических функций.
3. Законы логики и преобразование логических выражений.
Лабораторная работа № 3. Основы математической логики.

какие действия определяют знаки логических связок. Смотреть фото какие действия определяют знаки логических связок. Смотреть картинку какие действия определяют знаки логических связок. Картинка про какие действия определяют знаки логических связок. Фото какие действия определяют знаки логических связок 1. Логические выражения и логические операции

Исследования в алгебре логики тесно связаны с изучением высказываний (хотя высказывание — предмет изучения формальной логики). Высказывание — это языковое образование, в отношении которого имеет смысл говорить о его истинности или ложности (Аристотель).

Простым высказыванием называют повествовательное предложение, относительно которого имеет смысл говорить, истинно оно или ложно.

Считается, что каждое высказывание либо истинно, либо ложно и ни одно высказывание не может быть одновременно истинным и ложным.

Высказывания 1 и 3 являются истинными. Высказывание 2 – ложным , потому что число 27 составное 27=3*3*3.

Итак, отличительным признаком высказывания является свойство быть истинным или ложным, последние четыре предложения этим свойством не обладают.

С помощью высказываний устанавливаются свойства, взаимосвязи между объектами. Высказывание истинно, если оно адекватно отображает эту связь, в противном случае оно ложно.

Однако определение истинности высказывания далеко не простой вопрос. Например, высказывание «Число 1 +22 = 4294 967297 — простое», принадлежащее Ферма (1601-1665), долгое время считалось истинным, пока в 1732 году Эйлер (1707-1783) не доказал, что оно ложно. В целом, обоснование истинности или ложности простых высказываний решается вне алгебры логики. Например, истинность или ложность высказывания «Сумма углов треугольника равна 180°» устанавливается геометрией, причем в геометрии Евклида это высказывание является истинным, а в геометрии Лобачевского — ложным.

В булевой алгебре простым высказываниям ставятся в соответствие логические переменные, значение которых равно 1, если высказывание истинно, и 0, если высказывание ложно. Обозначаются логические переменные, большими буквами латинского алфавита.

Существуют разные варианты обозначения истинности и ложности логических переменных:

Сложные (составные) высказывания представляют собой набор простых высказываний (по крайней мере двух) связанных логическими операциями.

С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой (логическим выражением).

Связки «НЕ», «И», «ИЛИ» заменяются логическими операциями инверсия, конъюнкция, дизъюнкция. Это основные логические операции, при помощи которых можно записать любое логическое выражение.

Введем перечисленные логические операции.

В алгебре множеств конъюнкции соответствует операция пересечения множеств, т.е. множеству получившемуся в результате умножения множеств А и В соответствует множество, состоящее из элементов, принадлежащих одновременно двум множествам.

Источник

Логические связки

Логические связки, или логические операции — это символические конструкции логических языков (см. Язык формализованный), используемые для образования сложных высказываний (формул) из элементарных высказываний (см. Высказывание). Логическими связками называют также соответствующие этим символам союзы естественного языка (см. Язык). Обычно используются пять общеизвестных логических связок:

Из указанных логических связок отрицание называется одноместной (унарной) связкой; другие называются двухместными (бинарными) связками. В принципе, логические связки могут быть сколь угодно местными, но на практике более, чем бинарные, используются очень редко. В классической логике (см. Логика) любые многоместные логические связки выразимы через перечисленные. Некоторый практический смысл даёт также использование тернарной логической связки, называемой условной дизъюнкцией, связывающей три высказывания A, B и C и означающей, что «A в случае B, и C в случае не-B» или формально: (BA) & (¬ BC).

Классическая логика рассматривает логические связки экстенсионально (игнорируя содержательный смысл связываемых ими высказываний) как функции истинности, определяемые истинностными значениями связываемых ими высказываний. При двух имеющих место в этой логике истинностных значениях 1 (истинно) и 0 (ложно) высказывания A и B могут иметь четыре возможных набора упорядоченных истинностных значений: (1, 1), (1, 0), (0, 1), (0, 0). Пропозициональная истинностная функция ставит в соответствие каждому перечисленному набору одно из значений истинности — 1 или 0. Всего таких функций 16. Конъюнкция приписывает выражению A & B значение 1 только в случае, когда как A, так и B истинны, то есть оба имеют значение 1, в остальных случаях значение A & B равно 0. Дизъюнкция ΑB, напротив, ложна только в одном случае, когда ложны как A, так и B. Импликация AB является ложной только при истинном (антецеденте) A и ложном (консеквенте) B. В остальных случаях AB принимает значение 1.

Из четырёх одноместных функций интерес представляет только отрицание, меняющее значение высказывания на противоположное: когда A — истинно, ¬ A — ложно, и наоборот. Все другие унарные и бинарные классические функции могут быть выражены через представленные. Когда принятая в соответствующей семантике система логических связок позволяет дать определение всех остальных, её называют функционально полной. К полным системам в классической логике относятся, в частности, конъюнкция и отрицание; дизъюнкция и отрицание; импликация и отрицание. Конъюнкция и дизъюнкция определимы друг через друга за счёт эквивалентностей (A & B) ≡ ¬ (¬ A∨ ¬ B) и (AB) ≡ ¬ (¬ A & ¬ B), именуемых законами де Моргана, а также: (ΑΒ) ≡ (¬ ΑB), (A & B) ≡ ¬ (A ⊃ ¬ B), (ΑB) ≡ (AB) ⊃ A). Любая эквивалентность вида AB имеет силу только тогда, когда общезначима (всегда истинна) конъюнкция (AB) & (BA).

Функции антидизъюнкция и антиконъюнкция, определимые соответственно как ¬ (AB) и ¬ (A & B), также представляют каждая в отдельности функционально полную систему связок. Это последнее обстоятельство было известно уже Ч. С. Пирсу (неопубликованная при его жизни работа 1880 года) и было переоткрыто X. Шеффером. Используя антидизъюнкцию как единственную логическую связку, Шеффер в 1913 построил полное исчисление высказываний. Антидизъюнкцию обозначают AB и называют штрихом Шеффера, читая данное выражение, как «не-A и не-B». Ж. Нико употребил то же обозначение для антиконъюнкции («Неверно, что одновременно A и B») и с помощью только этой связки в 1917 сформулировал полное исчисление высказываний с одной (всего!) аксиомой и одним правилом вывода. Таким образом, штрихом Шеффера называют по сути саму вертикальную черту, которая у разных авторов может обозначать как антидизъюнкцию, так и антиконъюнкцию.

Экстенсиональность логических связок придаёт им однозначность, упрощает проблему построения логических исчислений, даёт возможность решать для последних метатеоретические проблемы непротиворечивости, разрешимости, полноты. Однако в некоторых случаях истинностно-функциональная трактовка связок приводит к значительному несоответствию с тем, как они понимаются в естественном языке. Так, указанная истинностная интерпретация импликации вынуждает признавать верными предложения вида «Если A, то B» даже в том случае, когда между высказываниями A и B (и, соответственно, событиями, о которых в них идёт речь) нет никакой реальной связи. Достаточно, чтобы A было ложным или B — истинным. Поэтому из двух предложений: «Если A, то B» и «Если B, то A», по крайней мере одно приходится признавать верным, что плохо сообразуется с обычным употреблением условной связки. Импликацию в данном случае специально называют «материальной», отличая её тем самым от условного союза, предполагающего, что между антецедентом и консеквентом истинного условного высказывания имеется действительная связь. При этом материальная импликация может прекрасно использоваться во многих контекстах, например, математических, когда при этом не забывают о её специфических особенностях. В некоторых случаях, однако, именно контекст не позволяет трактовать условный союз как материальную импликацию, предполагая взаимосвязь высказываний. Для анализа таких контекстов приходится строить специальные неклассические логики (например, релевантные логики), в язык которых вместо материальной импликации (или наряду с ней) вводятся другие импликации, которые понимаются интенсионально (содержательно) и верность которых не может быть обоснована истинностно-функционально. Интенсионально могут трактоваться также и другие логические связки.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *