какие детали относят к группе передачи

Детали передач

какие детали относят к группе передачи. Смотреть фото какие детали относят к группе передачи. Смотреть картинку какие детали относят к группе передачи. Картинка про какие детали относят к группе передачи. Фото какие детали относят к группе передачи

Любая машина состоит из деталей.

Деталь – часть машины, которую изготовляют без сборочных операций.

Несколько деталей, собранных в одно целое, образуют сборочную единицу или узел.

Среди множества разнообразных деталей и узлов можно выделить такие, которые применяют в разных машинах:

Эти детали (узлы) называют деталями (узлами) общемашиностроительного применения.

Другие детали – поршни, гребные винты, лопатки турбин и др. – применяют только в одном или нескольких типах машин.

Детали и узлы общемашиностроительного применения изготовляют ежегодно в больших количествах (в одном легковом автомобиле более пяти тысяч типодеталей, более тридцати подшипников), поэтому знание основных методов расчета, правил и норм проектирования, подтвержденных статистикой эксплуатации, очень важно для конструкторской подготовки.

В любом механизме, приборе и машине часть деталей в процессе работы должна перемещаться относительно друг друга. Характер движения, степень подвижности соединения и его точность зависят от вида и назначения соединения.

Вращательное движение деталей машин является самым распространенным, так как:

Детали вращательного движения подразделяются на:

Оси служат для поддержания вращающихся на них или вместе с ними различных деталей машин (например, передняя ось велосипеда и ось железнодорожного вагона).

какие детали относят к группе передачи. Смотреть фото какие детали относят к группе передачи. Смотреть картинку какие детали относят к группе передачи. Картинка про какие детали относят к группе передачи. Фото какие детали относят к группе передачи

Валы не только поддерживают детали, вращающиеся вместе с ними, но и передают движение при помощи этих деталей другим деталям. Например: вал привода коробки скоростей токарного станка, несущий на себе шестерни, передает с их помощью вращение мотора шпинделю. Валы, как и оси, могут быть сплошными или полыми.

Та часть вала, которая опирается на опору, когда нагру­зка направлена перпендикулярно его оси, называется цап­фой, а та часть вала, которой он опирается на опору, когда нагрузка направлена вдоль его оси, называется пятой.

Опоры валов и осей, в которых помещаются цапфы, назы­ваются подшипниками, а те, в которых располагаются пяты, называются подпятниками.

Детали, при помощи которых соединяют концы разных валов, называются муфтами.

Цапфы.

Если цапфа расположена на конце ва­ла, ее называют концевой, если посредине— назы­вают шейкой. Цилиндрическая поверхность цапфы и ее торцовая, прилегающая к опоре поверхность должны быть очень тщательно отшлифованы. Переход от поверхности вала к поверхности цапфы должен быть плавным, тщательно закругленным. Прямой или острый угол в месте перехода значительно ослабит прочность вала.какие детали относят к группе передачи. Смотреть фото какие детали относят к группе передачи. Смотреть картинку какие детали относят к группе передачи. Картинка про какие детали относят к группе передачи. Фото какие детали относят к группе передачи

Пяты — это те части вала, которыми он опи­рается на подпятники.

В кольцевой пяте выточку можно исполь­зовать для подвода масла. Шаровая пята применяется в тех случаях, когда она должна допускать отклонение вала на некоторый угол. Вставная пята при повреждении ее рабочей поверхности может быть заменена новой без замены всего вала.

какие детали относят к группе передачи. Смотреть фото какие детали относят к группе передачи. Смотреть картинку какие детали относят к группе передачи. Картинка про какие детали относят к группе передачи. Фото какие детали относят к группе передачи

Подпятники.

Подпятники служат опорами для валов, препятствуя их смещению от усилий, действующих вдоль оси. Поверхность подпятника скольжения должна соответствовать форме поверхности пяты.

В тех случаях, когда осевое давление невелико, например вдоль оси шпинделя токарного станка по дереву, вместо подпятников можно надевать на вал установочные буртики или кольца. Установочный буртик надевают в горячем состоянии, а установочные стопорные кольца являются съемными. Кольцо устанавливают на валу в нужном месте во время пред­варительной сборки и сверлят установленные в нем перпендикулярно оси кольца так, чтобы сверло прошло насквозь через кольцо и на несколько миллиметров вошло в тело вала. Оси отверстий должны быть расположены под углом в 90—135° друг к другу. После сверления кольцо снимают, в отверстиях нарезают резьбу, очень аккуратно зачищают заусенцы и прилегающую сторону кольца. Затем производят окончательную сборку, закрепляя кольцо стопорными винтами. Удерживающий конец винта должен иметь ту же форму, что и отверстие под него в теле вала. Головки винтов обязательно должны быть для без­опасности утоплены в теле кольца.

Муфты.

Муфты являются соединительными устройствами для валов, концы которых подходят друг к другу вплотную или на очень близкое расстояние. Обычно валы расположены на одной оси или под углом, а их концы выполнены так, чтобы они могли передавать вращение от одного вала к другому.какие детали относят к группе передачи. Смотреть фото какие детали относят к группе передачи. Смотреть картинку какие детали относят к группе передачи. Картинка про какие детали относят к группе передачи. Фото какие детали относят к группе передачи

Муфты применяются для составления длинных валов, для включения одной из частей вала, для соединения валов с частями приводных механизмов — шкивами ременной пере­дачи, зубчатыми колесами и прочее. По условиям работы муфты разделяют на неразъемные и разъемные. При помощи первых сцепление и расцепление валов может быть произве­дено только при остановке движения (вращения) и разборке самих муфт. При помощи разъемных муфт сцепление и рас­цепление валов производится без разборки муфт, на ходу передачи. Такой, например, является фрикционная муфта включения коробки скоростей токарного станка.

Подшипники.

Подшипники поддержи­вают валы при радиальной нагрузке, то есть когда нагрузка направлена перпен­дикулярно оси вращения. Примером являются подшипники, в которых вращается шпиндель токарного станка. Они восприни­мают вес самого шпинделя, насаженных на него деталей, вес патрона и других приспособлений.какие детали относят к группе передачи. Смотреть фото какие детали относят к группе передачи. Смотреть картинку какие детали относят к группе передачи. Картинка про какие детали относят к группе передачи. Фото какие детали относят к группе передачи

Подшипники и подпятники в зависимости от воз­никающего в них рода трения разделяются на:

В первых цапфы осей и валов помещаются в неподвижных вкладышах и при своем вращении скользят относительно их. Во вторых цапфы и пяты осей и валов опираются на специальные тела вращения — шарики или ролики и при своем вращении катятся по ним.

У подшипников и подпятников скольжения корпус обыч­но изготовляют из чугуна, он бывает целым или разъем­ным. Его верхняя часть называется крышкой, нижняя — подушкой. В корпус вставляют вкладыши из антифрикцион­ных материалов или из пластмасс. Вкладыши необходимо закреплять, чтобы они не имели осевого перемещения и не вращались.

Смазку вкладыша производят мазями, например, таво­том (если в цапфе большое давление, сильный нагрев и работа идет с перерывами), и маслами (во всех остальных случаях). Для смазки в стенке вкладыша делают отверстие, перпендикулярное его оси, а от него вдоль отверстия вкладыша прорубают спиральные канавки, не доводя их до торцов (боковых поверхностей) вкладыша, чтобы масло не вытекало. Для смазки мазями в теле подшипника (подпятника) сверлят отверстие, в котором нарезают резьбу и ввертывают масленку. В масленку набивают мазь, которую выдавливают к смазываемым поверхностям периодически: масленкой Штауфера с крышкой на резьбе или непрерывно — из тавотницы с пружинной крышкой.

Смазку вкладыша маслом можно производить и по-другому:

Подшипники качения являются одним из наиболее массовых видов изделий, из­готовляемых и применяемых в машиностроении. В подшипниках качения вращаются шпинели станков, валы электромоторов, валы авиационных и автомобильных двигателей, на них катятся велосипеды и автомобили и т. д.

Подшипники качения не рассчитывают, а подбирают по ГОСТу в зависимости от:

какие детали относят к группе передачи. Смотреть фото какие детали относят к группе передачи. Смотреть картинку какие детали относят к группе передачи. Картинка про какие детали относят к группе передачи. Фото какие детали относят к группе передачи

Все подшипники качения подразделяются на шариковые и роликовые. Те и другие в основном делятся на:

Все подшипники качения — неразъем­ные. Их устанавливают на концах вала. Роликовые под­шипники применяют для очень больших нагрузок.

Обычно подшипник качения состоит из колец, между которыми помещаются шарики или ролики, самих шариков или роликов и сепаратора, который их разделяет и удержи­вает на одинаковом расстоянии друг от друга. Одно из ко­лец запрессовывается в охватывающую деталь (например, крышку электромотора или корпус велосипедной втулки), а другое надевается на охватываемую (например, вал элек­тромотора или ось велосипедного колеса). При вращении охватываемой детали она катится вокруг охватывающей детали на шариках или роликах подшипника. В этом и со­стоит, как говорится, «весь фокус».

Шариковые подшипники бывают одно — и двухрядные. Вторые допускают небольшое отклонение оси вала от оси вращения.

В качестве смазки для подшипников качения, вращаю­щихся с небольшим числом оборотов (например, в металло­режущих и деревообрабатывающих станках и электромото­рах), служат тавот и другие густые смазки. На производстве такую смазку меняют примерно через 3000 часов работы.

какие детали относят к группе передачи. Смотреть фото какие детали относят к группе передачи. Смотреть картинку какие детали относят к группе передачи. Картинка про какие детали относят к группе передачи. Фото какие детали относят к группе передачи

При скоростях в несколько тысяч оборотов в минуту подшипники сильно нагреваются и их подвергают принуди­тельному охлаждению жидким маслом, подаваемым насосом.

Источник

Какие детали относят к группе передачи

Механической передачей называют устройство для передачи механического движения от двигателя к исполнительным органам машины. Может осуществляться с изменением значения и направления скорости движения, с преобразованием вида движения. Необходимость применения таких устройств обусловлена нецелесообразностью, а иногда и невозможностью непосредственного соединения рабочего органа машины с валом двигателя. Механизмы вращательного движения позволяют осуществить непрерывное и равномерное движение с наименьшими потерями энергии на преодоление трения и наименьшими инерционными нагрузками.

Механические передачи вращательного движения делятся:
— по способу передачи движения от ведущего звена к ведомому на передачи трением (фрикционные, ременные) и зацеплением (цепные, зубчатые, червячные)
— по соотношению скоростей ведущего и ведомого звеньев на замедляющие (редукторы) и ускоряющие (мультипликаторы);
— по взаимному расположению осей ведущего и ведомого валов на передачи с параллельными, пресекающимися и перекрещивающимися осями валов.

Замедляющие передачи получили большее распространение по сравнению с ускоряющими. Это объясняется тем, что скорости вращения валов двигателей различного вида, как правило, значительно выше скоростей валов рабочих машин. Более быстроходные двигатели имеют меньшие размеры по сравнению с тихоходными двигателями той же мощности, так как с увеличением частоты вращения уменьшаются силы и моменты, действующие на детали двигателя. Например, передавать вращение от быстроходной газовой турбины на вал несущего винта вертолета через специальную замедляющую зубчатую передачу (редуктор) значительно выгоднее, чем применять имеющий большие габаритные размеры и массу тихоходный двигатель, вал которого соединялся бы непосредственно с винтом. Из всех типов передач наиболее распространенными являются зубчатые.

В каждой передаче различают два основных вала: входной и выходной, или ведущий и ведомый. Между этими валами в многоступенчатых передачах располагаются промежуточные валы.

Волновые механические передачи

Волновая передача основана на принципе преобразования параметров движения за счет волнового деформирования гибкого звена механизма. Впервые такая передача была запатентована в США инженером Массером. [3]
Волновые зубчатые передачи (рис. 2.14) являются разновидностью планетарных передач, у которых одно из колес гибкое.
Волновая передача включает в себя жесткое зубчатое колесо b с внутренними зубьями и вращающееся гибкое колесо g c наружными зубьями. Гибкое колесо входит в зацепление с жестким в двух зонах с помощью генератора волн (например, водила h с двумя роликами), который соединяют с корпусом передачи b.

какие детали относят к группе передачи. Смотреть фото какие детали относят к группе передачи. Смотреть картинку какие детали относят к группе передачи. Картинка про какие детали относят к группе передачи. Фото какие детали относят к группе передачи
Рис. 2.14. Волновая зубчатая передача

Гибкое зубчатое колесо представляет собой гибкий цилиндр, один конец которого соединен с валом и сохраняет цилиндрическую форму, а другой конец имеет зубья. Генератор волн служит для образования и движения волны деформации на гибком зубчатом колесе.
Генераторы волн бывают механические, пневматические, гидравлические, электромагнитные. Механические генераторы могут быть двухроликовыми, четырехроликовыми, дисковыми, кольцевыми и кулачковыми. Генератор волн может располагаться внутри гибкого колеса или вне его. Число волн – любое.

К основным достоинствам волновых передач по сравнению с зубчатыми передачами следует отнести:
— их меньшие массу и габариты;
— кинематическую точность;
— высокую демпфирующую способность;
— обеспечение больших передаточных отношений в одной ступени (50…300);
— возможность передачи движения в герметизированное пространство без применения уплотнений.

Недостатки:
— сложность конструкции;
— ограничение скорости вращения ведущего вала генератора волн при больших диаметрах колес;
— повышенные потери мощности на трение и на деформацию гибкого колеса (КПД составляет 0,7-0,85 при U = 80-250).
Волновые передачи применяют в приводах для передачи движения в герметизированное пространство в химической, атомной и космической технике; в силовых и кинематических приводах общего назначения с большим передаточным отношением; в исполнительных малоинерционных быстродействующих механизмах систем автоматического регулирования и управления; в механизмах отсчетных устройств повышенной кинематической точности.

Фрикционные передачи

Передачи, работа которых основана на использовании сил трения, возникающих между рабочими поверхностями двух прижатых друг к другу тел вращения, называют фрикционными передачами.
Для нормальной работы передачи необходимо, чтобы сила трения Fтр была больше окружной силы Ft, определяющей заданный вращающий момент: Ft Область применения.
Фрикционные передачи с постоянным передаточным отношением применяют сравнительно редко. Их область ограничивается преимущественно кинематическими цепями приборов, от которых требуется плавность движения, бесшумность работы, безударное включение на ходу и т.п.
Фрикционные вариаторы применяют достаточно широко для обеспечения бесступенчатого регулирования скорости в станкостроении, текстильных, бумагоделательных и других машинах и приборах. В авиастроении фрикционные передачи не применяются. Диапазон передаваемых мощностей обычно находится в пределах до 10 кВт, так как при больших мощностях трудно обеспечить необходимое усилие прижатия катков.

Способы прижатия катков.
Существует два вида прижатия катков: с постоянной силой, которую определяют по максимальной нагрузке передачи; с регулируемой силой, которая автоматически изменяется с изменением нагрузки. Лучшие показатели получают при саморегулируемом прижатии.

Способ прижатия катков оказывает большое влияние на качественные характеристики передачи: КПД, постоянство передаточного отношения, контактную прочность и износ катков.

Скольжение в передаче.
Различают три вида скольжения: буксование, упругое скольжение и геометрическое скольжение.
Буксование наступает при перегрузках элементов передачи. При этом ведомый каток останавливается, а ведущий скользит по нему, что приводит к интенсивному местному изнашиванию или задиру на ведомом катке.

Упругое скольжение характерно для нормально работающей передачи. Участки поверхности ведущего катка подходят к площадке контакта сжатыми, а отходят растянутыми. На ведомом катке наблюдается обратная картина. Касание сжатых и растянутых волокон катков приводит к их упругому скольжению, что вызывает отставание ведомого катка от ведущего.

Геометрическое скольжение связано с тем, что окружные скорости вращения ведущего и ведомого катков на площадке их контакта различны. Например, в лобовом вариаторе (см. рис. 2.15, б) окружная скорость V2 меняется с изменением R, а скорость V1 на этой площадке постоянна. Геометрическое скольжение является основной причиной изнашивания рабочих поверхностей элементов фрикционных передач.

Ременные передачи

Ременная передача состоит из двух шкивов, закрепленных на валах, и охватывающего их ремня. Ремень надет на шкивы с определенным натяжением, обеспечивающим трение между ремнем и шкивами, достаточное для передачи мощности от ведущего шкива к ведомому.
В зависимости от формы поперечного сечения ремня различают: плоскоременную, клиноременную и круглоременную (рис. 2.16, а – в) передачи.

какие детали относят к группе передачи. Смотреть фото какие детали относят к группе передачи. Смотреть картинку какие детали относят к группе передачи. Картинка про какие детали относят к группе передачи. Фото какие детали относят к группе передачи
Рис. 2.16. Ременные передачи

Сравнивая ременную передачу с зубчатой можно отметить следующие преимущества:
— возможность передачи движения на значительное расстояние (до 15 м и более);
— плавность и бесшумность работы, обусловленные эластичностью ремня и позволяющие работать при высоких скоростях;
— способность выдерживать перегрузки (до трех сотен процентов) благодаря увеличению скольжения ремня;
— невысокая стоимость;
— простота обслуживания и ремонта.

Основными недостатками ременной передачи являются:
— непостоянство передаточного отношения из-за скольжения ремня на шкивах;
— значительные габаритные размеры при больших мощностях (для одинаковых условий диаметры шкивов примерно в 5 раз больше диаметров зубчатых колес);
— большое давление на шкивы в результате натяжения ремня;
— низкая долговечность ремней (от 1000 до 5000 ч).

Ременные передачи применяют преимущественно в тех случаях, когда по условиям конструкции валы расположены на значительных расстояниях. Мощность современных передач не превышает 50 кВт.
В многоступенчатых приводах ременную передачу применяют обычно в качестве быстроходной ступени, устанавливая ведущий шкив на валу двигателя. В таком случае габариты и масса передачи будут наименьшими.

Критерии работоспособности и расчета.
Опыт эксплуатации передач в различных машинах и механизмах показал, что работоспособность передач ограничивается преимущественно тяговой способностью, определяемой силой трения между ремнем и шкивом, долговечностью ремня, которая в условиях нормальной эксплуатации ограничивается разрушением ремня от усталости.

Цепные передачи

Цепная передача состоит из двух колес с зубьями (звездочек) и охватывающей их цепи. Наиболее распространены передачи с втулочно-роликовой цепью (рис. 2.19, а) и зубчатой цепью (рис. 2.19, б). Цепные передачи применяются для передачи средних мощностей (не более 150 кВт) между параллельными валами в случаях, когда межосевые расстояния велики для зубчатых передач.

Преимуществами цепных передач являются:
— отсутствие проскальзывания;
— достаточная быстроходность (20-30 м/с);
— сравнительно большое передаточное число (7 и более);
— высокий КПД;
— возможность передачи движения от одной цепи нескольким звездочкам;
— небольшая нагрузка на валы, т.к. цепная передача не нуждается в предварительном натяжении цепи необходимом для ременной передачи.

Недостатками цепных передач являются:
— вытяжка цепей вследствие износа шарниров;
— более высокая стоимость передачи по сравнению с ременной;
— необходимость регулярной смазки;
— значительный шум.

какие детали относят к группе передачи. Смотреть фото какие детали относят к группе передачи. Смотреть картинку какие детали относят к группе передачи. Картинка про какие детали относят к группе передачи. Фото какие детали относят к группе передачи

По назначению цепи подразделяют на приводные, используемые в приводах машин; тяговые, применяемые в качестве тягового органа в конвейерах, и грузовые, используемые в грузоподъемных машинах для подъема грузов.
Цепные передачи применяются, например, для управления рулем направления самолета (рис. 2.20), для привода механизма отклонения триммера руля высоты.
Звездочки. По конструкции звездочки похожи на зубчатые колеса. Делительная окружность звездочки проходит через центры шарниров цепи. Профилирование их зубьев выполняют по стандарту. Ширина b зубчатого венца звездочки принимается несколько меньшей расстояния между внутренними пластинками. Звездочки больших размеров выполняют составными.

Передача винт-гайка

Передача винт-гайка служит для преобразования вращательного движения в поступательное. Широкое применение таких передач определяется тем, что при простой и компактной конструкции удается осуществить медленные и точные перемещения.
В авиастроении передача винт-гайка используется в механизмах управления самолетом: для перемещения взлетно-посадочных закрылков, для управления триммерами, поворотными стабилизаторами и др.
К преимуществам передачи относятся простота и компактность конструкции, большой выигрыш в силе, точность перемещений.
Недостатком передачи является большая потеря на трение и связанный с этим малый КПД.

какие детали относят к группе передачи. Смотреть фото какие детали относят к группе передачи. Смотреть картинку какие детали относят к группе передачи. Картинка про какие детали относят к группе передачи. Фото какие детали относят к группе передачи
Рис. 2.22. Передачи винт-гайка

В винтовой передаче вращение винта 1 вызывает поступательное перемещение гайки 2 (рис. 2.22, а), а вращение гайки 2 приводит к поступательному перемещению винта 1 (рис. 2.22, б).

Передаточное отношение.
В винтовых механизмах винт или гайка приводится в движение с помощью маховика, шестерни и др. Передаточное отношение для этих передач можно условно выразить соотношением окружного перемещения маховика Sм к перемещению гайки (винта) Sr:
i = Sм / Sr = π dм / p1 (2.65), где dм – диаметр маховика (шестерни и т.п.); р1 – ход винта.
Зависимость между окружной силой Ft на маховике и осевой силой Fa на гайке запишем в виде:
Ft = Fa i η (2.66), где η – КПД винтовой пары.

Рычажные механизмы

Механизмы, в которые входят жесткие звенья, соединенные между собой кинематическими парами пятого класса, называют рычажными механизмами.
В кинематических парах таких механизмов давление и интенсивность изнашивания звеньев меньше, чем в высших кинематических парах.
Среди разнообразных рычажных механизмов наиболее распространенными являются плоские четырехзвенные механизмы. Они могут иметь четыре шарнира (шарнирные четырехзвенники), три шарнира и одну поступательную пару или два шарнира и две поступательные пары. Их используют для воспроизведения заданной траектории выходных звеньев механизмов, преобразования движения, передачи движения с переменным передаточным отношением.
Под передаточным отношением рычажного механизма понимают отношение угловых скоростей основных звеньев, если они совершают вращательные движения, или отношение линейных скоростей центра пальца кривошипа и выходного звена, если оно совершает поступательное движение.

Кривошипно-ползунный механизм. Этот механизм имеет самое широкое применение в машиностроении и используется в двигателях внутреннего сгорания, станках, компрессорах, поршневых насосах, прессах, а также при механизации и автоматизации как основных, так и вспомогательных операций технологического процесса.
Из рис. 2.24 видно, что
какие детали относят к группе передачи. Смотреть фото какие детали относят к группе передачи. Смотреть картинку какие детали относят к группе передачи. Картинка про какие детали относят к группе передачи. Фото какие детали относят к группе передачи(2.69)

какие детали относят к группе передачи. Смотреть фото какие детали относят к группе передачи. Смотреть картинку какие детали относят к группе передачи. Картинка про какие детали относят к группе передачи. Фото какие детали относят к группе передачи
Рис. 2.24. Кривошипно-ползунный механизм

Кулачковые механизмы

Кулачковые механизмы (рис. 2.26) по широте применения уступают только зубчатым передачам. Их используют в станках и прессах, двигателях внутреннего сгорания, машинах текстильной, пищевой и полиграфической промышленности. В этих машинах они выполняют функции подвода и отвода инструмента, подачи и зажима материала в станках, выталкивания, поворота, перемещения изделий и др.

Кулачковые механизмы имеют ряд преимуществ:
— возможность воспроизведения почти любого закона движения ведомого звена;
— простота согласования работы нескольких механизмов в машинах-автоматах;
— надежность в работе и компактность.

К недостаткам этих механизмов следует отнести относительно быстрое изнашивание соприкасающихся поверхностей, которое обусловлено ускоренным движением толкателя, отсутствием смазки, а также наличием вибрации, которая возрастает с увеличением частоты вращения кулачка.

Классификация механизмов.
По характеру движения механизмы подразделяют на пространственные и плоские. В зависимости от вида движения кулачка механизмы подразделяют на поступательные (рис. 2.26, г, д), вращательные (рис. 2.26, а, б, в) и качающиеся. По взаимному расположению кулачка и толкателя механизмы называют центральными и дезаксиальными (нецентральными). По типу замыкания высшей кинематической пары их подразделяют на пары с кинематическим и силовым замыканием.

какие детали относят к группе передачи. Смотреть фото какие детали относят к группе передачи. Смотреть картинку какие детали относят к группе передачи. Картинка про какие детали относят к группе передачи. Фото какие детали относят к группе передачи
Рис. 2.26. Кулачковые механизмы:
а, б, в – дисковые; г, д – плоские с поступательным перемещением кулачка; е – гиперболоидные

Силовое замыкание происходит под действием пружины, силы тяжести груза либо реализуется гидравлическим или пневматическим способом. Оно характерно преимущественно для механизмов, работающих с небольшими скоростями звеньев.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *