какие деформируемые сплавы упрочняются термообработкой

Деформируемые сплавы, упрочняемые термической обработкой.

К таким сплавам относятся дюралюмины ( сложные сплавы систем алюминий – медь –магний или алюминий – медь – магний – цинк). Они имеют пониженную коррозионную стойкость, для повышения которой вводится марганец.

Дюралюмины обычно подвергаются закалке с температуры 500 o С и естественному старению, которому предшествует двух-, трехчасовой инкубационный период. Максимальная прочность достигается через 4…5 суток.

Широкое применение дюралюмины находят в авиастроении, автомобилестроении, строительстве.

Высокопрочными стареющими сплавами являются сплавы, которые кроме меди и магния содержат цинк. Сплавы В95, В96 имеют предел прочности около 650 МПа. Основной потребитель – авиастроение (обшивка, стрингеры, лонжероны).

Ковочные алюминиевые сплавы АК:, АК8 применяются для изготовления поковок. Поковки изготавливаются при температуре 380…450 o С, подвергаются закалке от температуры 500…560 o С и старению при 150…165 o С в течение 6…15 часов.

В состав алюминиевых сплавов дополнительно вводят никель, железо, титан, которые повышают температуру рекристаллизации и жаропрочность до 300 o С.

Изготавливают поршни, лопатки и диски осевых компрессоров, турбореактивных двигателей.

Литейные алюминиевые сплавы.

К литейным сплавам относятся сплавы системы алюминий – кремний (силумины), содержащие 10…13 % кремния.

Присадка к силуминам магния, меди содействует эффекту упрочнения литейных сплавов при старении. Титан и цирконий измельчают зерно. Марганец повышает антикоррозионные свойства. Никель и железо повышают жаропрочность.

Литейные сплавы маркируются от АЛ2 до АЛ20. Силумины широко применяют для изготовления литых деталей приборов и других средне- и малонагруженных деталей, в том числе тонкостенных отливок сложной формы.

Магний и его сплавы

Основными магниевыми сплавами являются сплавы магния с алюминием, цинком, марганцем, цирконием. Сплавы делятся на деформируемые и литейные.

Сплавы упрочняются после закалки и искусственного старения. Закалку проводят от температуры 380…420 o С, старение при температуре 260…300 o С в течение 10…24 часов. Особенностью является длительная выдержка под закалку – 4…24 часа.

Источник

Деформируемые сплавы, упрочняемые термической обработкой

какие деформируемые сплавы упрочняются термообработкой. Смотреть фото какие деформируемые сплавы упрочняются термообработкой. Смотреть картинку какие деформируемые сплавы упрочняются термообработкой. Картинка про какие деформируемые сплавы упрочняются термообработкой. Фото какие деформируемые сплавы упрочняются термообработкой какие деформируемые сплавы упрочняются термообработкой. Смотреть фото какие деформируемые сплавы упрочняются термообработкой. Смотреть картинку какие деформируемые сплавы упрочняются термообработкой. Картинка про какие деформируемые сплавы упрочняются термообработкой. Фото какие деформируемые сплавы упрочняются термообработкой какие деформируемые сплавы упрочняются термообработкой. Смотреть фото какие деформируемые сплавы упрочняются термообработкой. Смотреть картинку какие деформируемые сплавы упрочняются термообработкой. Картинка про какие деформируемые сплавы упрочняются термообработкой. Фото какие деформируемые сплавы упрочняются термообработкой какие деформируемые сплавы упрочняются термообработкой. Смотреть фото какие деформируемые сплавы упрочняются термообработкой. Смотреть картинку какие деформируемые сплавы упрочняются термообработкой. Картинка про какие деформируемые сплавы упрочняются термообработкой. Фото какие деформируемые сплавы упрочняются термообработкой

какие деформируемые сплавы упрочняются термообработкой. Смотреть фото какие деформируемые сплавы упрочняются термообработкой. Смотреть картинку какие деформируемые сплавы упрочняются термообработкой. Картинка про какие деформируемые сплавы упрочняются термообработкой. Фото какие деформируемые сплавы упрочняются термообработкой

какие деформируемые сплавы упрочняются термообработкой. Смотреть фото какие деформируемые сплавы упрочняются термообработкой. Смотреть картинку какие деформируемые сплавы упрочняются термообработкой. Картинка про какие деформируемые сплавы упрочняются термообработкой. Фото какие деформируемые сплавы упрочняются термообработкой

Деформируемые сплавы, неупрочняемые термической обработкой

Основные легирующие элементы: магний, марганец.

Обозначение: АМг (сплав Аl – Mg); АМц (сплав Аl – Mn).

Свойства: невысокая прочность, хорошая пластичность и коррозионная стойкость.

Используются в отожженном состоянии, либо упрочняются деформацией, нагартовкой.

Эти сплавы хорошо обрабатываются и свариваются.

Относятся сплавы системы алюминий – медь (магний). Наиболее известные сплавы этой группы – дюралюмины.

Обозначение: Д1; Д16.

Термическая обработка для дюралюминов заключается в закалке и последующем старении.

Закалка проводится с температуры 500°С, в воде. После закалки структура сплавов: пересыщенный твердый раствор меди в алюминии. В закаленном состоянии сплавы имеют невысокую прочность при сохранении пластичности. Закаленные детали можно подвергать технологическим операциям.

После закалки с целью упрочнения проводится старение:естественное(при комнатной температуре) или искусственное (при температуре 150-250°С).

Старениепроцесс распада пересыщенного твердого раствора легирующих элементов в металлической матрице с образованием дисперсных частиц интерметаллидных соединений с целью упрочнения сплавов.

Процесс старения включает несколько стадий:

1 стадия – образование зон Гинье-Престона ГП-1(образование прослоек повышенной концентрации меди размером 4 – 10 нм в растворе меди в алюминии);

2 стадия – рост зон Гинье-Престона (100нм) и образование зон ГП-2. При этом повышается прочность сплава;

Естественное старение заканчивается образованием зон ГП-1 и ГП-2.

Искусственное старение заканчивается образованием Θ – фазы.

Структура сплавов после закалки и естественного старения – твердый раствор + зоны ГП.

Структура сплавов после закалки и искусственного старения – твердый раствор + Θ-фаза.

После термической обработки дюрали значительно упрочняются, причем эффект максимального упрочнения достигается после закалки и естественного старения. Кроме того, в дюралях увеличивается стойкость к усталостным и хрупким разрушениям.

Дюрали используют в самолетостроении, в пищевой, химической промышленности, для корпусов катеров, яхт.

Для повышения коррозионной стойкости дюрали плакируют. (поверхность листов из дюрали покрывают чистым алюминием и прокатывают).

В последнее время для снижения полетной массы в ракетной технике и самолетостроении используют легирование литием. Создаются сплавы системы Al – Mg – Li и Al – Cu – Li.

3. Литейные алюминиевые сплавы .

Используют для изготовления готовых литых деталей.

Литейные сплавы алюминия обозначаются: АЛ2; АЛ9; АЛ13; АЛ14 и т.д., где А – алюминиевый сплав, Л – литейный сплав, число – условный номер сплава.

Основные легирующие элементы: кремний (система Al – Si, силумины), магний, цинк, медь.

Сплавы на основе магния

Также как и алюминий, магний имеет малую плотность, низкую температуру плавления, высокую удельную прочность. Обладает высокой жесткостью при изгибе и кручении. Хорошо обрабатывается, шлифуется и полируется. Сплавы магния пластичны и имеют хорошие литейные свойства.

При окислении магний образует на поверхности пленку MgO, очень прочную и хрупкую. Она быстро разрушается и поэтому для увеличения коррозионной стойкости магниевых сплавов их легируют марганцем, титаном.

Магниевые сплавы применяют в авиационной промышленности, в ракетной и космической технике, электротехнике, приборостроении.

Магниевые сплавы подразделяются на:

· деформируемые (обозначение МА);

· литейные (обозначение МЛ).

Основные легирующие элементы: марганец, цинк, цирконий, алюминий.

— Отжиг (для снятия напряжений в литых деталях);

— Закалка + старение (для упрочнения).

Титан и его сплавы

α – титан с ГПУ решеткой и

β – титан с ОЦК (высокотемпературная модификация).

какие деформируемые сплавы упрочняются термообработкой. Смотреть фото какие деформируемые сплавы упрочняются термообработкой. Смотреть картинку какие деформируемые сплавы упрочняются термообработкой. Картинка про какие деформируемые сплавы упрочняются термообработкой. Фото какие деформируемые сплавы упрочняются термообработкой

Температура полиморфного превращения равна 882°С.

Механические свойства титана существенно зависят от его чистоты. Примеси в титане (кислород, азот, водород, железо, кремний) могут повышать прочность, но при этом значительно снижать пластичность. Титан и его сплавы имеют очень высокую удельную прочность, пластичность, легко обрабатываются давлением, хорошо свариваются. Однако обладают плохой обрабатываемостью резанием.

В основе принципа легирования титановых сплавов лежит эффект повышения прочности, жаропрочности и коррозионной стойкости.

Основные легирующие элементы: алюминий, хром, молибден, ванадий, марганец и др.

Легирующие элементы существенно изменяют температуру полиморфного превращения. Так алюминий, кислород, азот повышают температуру полиморфного превращения, расширяя при этом область твердых растворов на базе α – титана, Такие элементы называются α – стабилизаторами.Однако кислород и азот сильно охрупчивают титан, поэтому алюминий является основным упрочняющим легирующим элементом для α – сплавов.

Большинство легирующих элементов (Mo, V, Mn, Fe, Cr) понижают температуру полиморфного превращения и расширяют область твердых растворов на базе β – титана. Такие элементы называются β – стабилизаторами.

Термическая обработка для упрочнения сплавов титана, заключающаяся в закалке и старении, применима только для сплавов титана со структурой (α + β).

Сплавы с равновесной α – структурой нельзя упрочнить термической обработкой.

Промышленные титановые сплавы подразделяются на α – сплавы, β – сплавы и (α + β ) – сплавы.

Сплавы с α – структурой имеют невысокую прочность при нормальной температуре, низкую технологическую пластичность, но хорошую свариваемость и высокие механические свойства при отрицательных температурах.

Сплавы с β – структурой имеют высокую коррозионную стойкость, хорошо обрабатываются давлением, однако используются достаточно редко из-за необходимости легирования их большим количеством дорогостоящих элементов.

Сплавы с (α + β) –структурой характеризуются наилучшим сочетанием механических и технологических свойств.

Сплавы титана имеют хорошие литейные свойства, особенно жидкотекучесть, поэтому большая часть изделий и деталей из титановых сплавов изготавливается литьем.

Титановые сплавы широко используются в ракетной и космической технике, в авиационной промышленности, в судостроении. Обладая высокой коррозионной стойкости в морской воде, титановые сплавы используют для корпусов судов и морских сооружений.

Также титан используется в пищевой, химической промышленности, в медицине. Однако титановые сплавы остаются наиболее дорогими по сравнению с другими конструкционными материалами.

Сплавы на основе меди

Чистая медь имеет очень высокую электрическую проводимость, пластичность, коррозионную стойкость в воде, однако низкие прочностные характеристики, поэтому медь не используется как конструкционный материал, а применяется в электро- и радиотехнике.

Сплавы меди имеют хорошие характеристики механических свойств при низких температурах, хорошо деформируются, свариваются и паяются. Но плохо обрабатываются резанием.

— По технологическим свойствам медные сплавы подразделяются на деформируемые и литейные.

— По составу медные сплавы подразделяются на

1. латуни (сплав меди с цинком)

Источник

Деформируемые сплавы, упрочняемые термической обработкой.

К таким сплавам относятся дюралюмины ( сложные сплавы систем алюминий – медь –магний или алюминий – медь – магний – цинк). Они имеют пониженную коррозионную стойкость, для повышения которой вводится марганец.

Дюралюмины обычно подвергаются закалке с температуры 500 o С и естественному старению, которому предшествует двух-, трехчасовой инкубационный период. Максимальная прочность достигается через 4…5 суток.

Широкое применение дюралюмины находят в авиастроении, автомобилестроении, строительстве.

Высокопрочными стареющими сплавами являются сплавы, которые кроме меди и магния содержат цинк. Сплавы В95, В96 имеют предел прочности около 650 МПа. Основной потребитель – авиастроение (обшивка, стрингеры, лонжероны).

Ковочные алюминиевые сплавы АК:, АК8 применяются для изготовления поковок. Поковки изготавливаются при температуре 380…450 o С, подвергаются закалке от температуры 500…560 o С и старению при 150…165 o С в течение 6…15 часов.

В состав алюминиевых сплавов дополнительно вводят никель, железо, титан, которые повышают температуру рекристаллизации и жаропрочность до 300 o С.

Изготавливают поршни, лопатки и диски осевых компрессоров, турбореактивных двигателей.

Литейные алюминиевые сплавы.

К литейным сплавам относятся сплавы системы алюминий – кремний (силумины), содержащие 10…13% кремния.

Присадка к силуминам магния, меди содействует эффекту упрочнения литейных сплавов при старении. Титан и цирконий измельчают зерно. Марганец повышает антикоррозионные свойства. Никель и железо повышают жаропрочность.

Литейные сплавы маркируются от АЛ2 до АЛ20. Силумины широко применяют для изготовления литых деталей приборов и других средне- и малонагруженных деталей, в том числе тонкостенных отливок сложной формы.

56. Материалы порошковой металлургии

Порошковая металлургия – область техники, охватывающая процессы получения порошков металлов и металлоподобных соединений и процессы изготовления изделий из них без расплавления.

Характерной особенностью порошковой металлургии является применение исходного материала в виде порошков, из которых прессованием формуются изделия заданной формы и размеров. Полученные заготовки подвергаются спеканию при температуре ниже температуры плавления основного компонента.

Основными достоинствами технологии производства изделий методом порошковой металлургии являются

— возможность изготовления деталей из тугоплавких металлов и соединений, когда другие методы использовать невозможно;

— значительная экономия металла за счет получения изделий высокой точности, в минимальной степени нуждающихся в последующей механической обработке (отходы составляют не более 1…3%);

— возможность получения материалов максимальной чистоты;

— простота технологии порошковой металлургии.

Методом порошковой металлургии изготавливают твердые сплавы, пористые материалы: антифрикционные и фрикционные, фильтры; электропроводники, конструкционные детали, в том числе работающие при высоких температурах и в агрессивных средах.

Пористые порошковые материалы

Отличительной особенностью является наличие равномерной объемной пористости, которая позволяет получать требуемые эксплуатационные свойства.

Антифрикционные материалы (пористость 15…30%), широко применяющиеся для изготовления подшипников скольжения, представляют собой пористую основу, пропитанную маслом. Масло поступает из пор на поверхность, и подшипник становится самосмазывающимся, не требуется подводить смазку извне. Это существенно для чистых производств (пищевая, фармацевтическая отрасли). Такие подшипники почти не изнашивают поверхность вала, шум в 3…4 раза меньше, чем от шариковых подшипников.

Подшипники работают при скоростях трения до 6 м/с при нагрузках до 600 МПа. При меньших нагрузках скорости скольжения могут достигать 20…30 м/с. Коэффициент трения подшипников – 0,04…0,06.

Для изготовления используются бронзовые или железные порошки с добавлением графита (1…3%).

Разработаны подшипниковые спеченные материалы на основе тугоплавких соединений (боридов, карбидов и др.), содержащие в качестве твердой смазки сульфиды, селениды и гексагональный нитрид бора. Подшипники могут работать в условиях вакуума и при температурах до 500 o С.

Применяют металлопластмассовые антифрикционные материалы: спеченные бронзографиты, титан, нержавеющие стали пропитывют фторопластом. Получаются коррозионностойкие и износостойкие изделия. Срок службы металлопластмассовых материалов вдвое больше, чем материалов других типов.

Фрикционные материалы (пористость 10…13%) предназначены для работы в муфтах сцепления и тормозах. Условия работы могут быть очень тяжелыми: трущиеся поверхности мгновенно нагреваются до 1200 o С, а материал в объеме – до 500…600 o С. Применяют спеченные многокомпонентные материалы, которые могут работать при скоростях трения до 50 м/с на нагрузках 350…400 МПа. Коэффициент трения при работе в масле – 0,08…0,15, при сухом трении – до 0,7.

По назначению компоненты фрикционных материалов разделяют на группы:

а) основа – медь и ее сплавы – для рабочих температур 500…600 o С, железо, никель и сплавы на их основе – для работы при сухом трении и температурах 1000…1200 o С;

б) твердые смазки – предотвращают микросхватывание при торможении и предохраняют фрикционный материал от износа; используют свинец, олово, висмут, графит, сульфиты бария и железа, нитрид бора;

в) материалы, обеспечивающие высокий коэффициент трения – асбест, кварцевый песок, карбиды бора, кремния, хрома, титана, оксиды алюминия и хрома и др.

Примерный состав сплава: медь – 60…70%, олово – 7%, свинец – 5%, цинк – 5…10%, железо – 5…10%, кремнезем или карбид кремния – 2…3%, графит – 1…2%.

Из фрикционных материалов изготавливают тормозные накладки и диски. Так как прочность этих материалов мала, то их прикрепляют к стальной основе в процессе изготовления (припекают к основе) или после (приклепывают, приклеивают и т.д.).

Фильтры (пористость 25…50%) из спеченных металлических порошков по своим эксплуатационным характеристикам превосходят другие фильтрующие материалы, особенно когда требуется тонкая фильтрация.

Они могут работать при температурах от –273 o С до 900 o С, быть коррозионностойкими и жаропрочными (можно очищать горячие газы). Спекание позволяет получать

57. Конструкционные порошковые материалы

Спеченные стали. Типовыми порошковыми деталями являются кулачки, корпуса подшипников, ролики, звездочки распределительных валов, детали пишущих и вычислительных машин и другие. В основном это слабонагруженные детали, их изготавливают из порошка железа и графита. Средненагруженные детали изготавливают или двукратным прессованием – спеканием, или пропиткой спеченной детали медью или латунью. Детали сложной конфигурации (например, две шестерни на трубчатой оси) получают из отдельных заготовок, которые насаживают одну на другую с натягом и производят спекание. Для изготовления этой группы деталей используют смеси железо – медь – графит, железо – чугун, железо – графит – легирующие элементы.

Особое место занимают шестерни и поршневые кольца. Шестерни в зависимости от условий работы изготавливают из железо – графита или из железо – графита с медью или легирующими элементами. Снижение стоимости шестерни при переходе с нарезки зубьев на спекание порошка составляет 30…80%. Пропитка маслом позволяет обеспечить самосмазываемость шестерни, уменьшить износ и снизить шум при работе.

Спеченные поршневые кольца изготавливают из смеси железного порошка с графитом, медью и сульфидом цинка (твердая смазка). Для повышения износостойкости делают двухслойные кольца: во внешний слой вводят хром и увеличивают содержание графита. Применение таких колец увеличивает пробег автомобильного двигателя, уменьшаеттего износ и сокращает расход масла.

Высоколегированные порошковые стали, содержащие 20% хрома и 15% никеля, используют для изготовления изделий, работающих в агрессивных средах.

Источник

Деформируемые сплавы, упрочняемые термической обработкой

какие деформируемые сплавы упрочняются термообработкой. Смотреть фото какие деформируемые сплавы упрочняются термообработкой. Смотреть картинку какие деформируемые сплавы упрочняются термообработкой. Картинка про какие деформируемые сплавы упрочняются термообработкой. Фото какие деформируемые сплавы упрочняются термообработкой какие деформируемые сплавы упрочняются термообработкой. Смотреть фото какие деформируемые сплавы упрочняются термообработкой. Смотреть картинку какие деформируемые сплавы упрочняются термообработкой. Картинка про какие деформируемые сплавы упрочняются термообработкой. Фото какие деформируемые сплавы упрочняются термообработкой какие деформируемые сплавы упрочняются термообработкой. Смотреть фото какие деформируемые сплавы упрочняются термообработкой. Смотреть картинку какие деформируемые сплавы упрочняются термообработкой. Картинка про какие деформируемые сплавы упрочняются термообработкой. Фото какие деформируемые сплавы упрочняются термообработкой какие деформируемые сплавы упрочняются термообработкой. Смотреть фото какие деформируемые сплавы упрочняются термообработкой. Смотреть картинку какие деформируемые сплавы упрочняются термообработкой. Картинка про какие деформируемые сплавы упрочняются термообработкой. Фото какие деформируемые сплавы упрочняются термообработкой

какие деформируемые сплавы упрочняются термообработкой. Смотреть фото какие деформируемые сплавы упрочняются термообработкой. Смотреть картинку какие деформируемые сплавы упрочняются термообработкой. Картинка про какие деформируемые сплавы упрочняются термообработкой. Фото какие деформируемые сплавы упрочняются термообработкой

какие деформируемые сплавы упрочняются термообработкой. Смотреть фото какие деформируемые сплавы упрочняются термообработкой. Смотреть картинку какие деформируемые сплавы упрочняются термообработкой. Картинка про какие деформируемые сплавы упрочняются термообработкой. Фото какие деформируемые сплавы упрочняются термообработкой

Упрочняемые термообработкой деформируемые сплавы соответствуют участку 2 на обобщённой диаграмме состояний (рис.1.1). Высокие механические свойства таких сплавов достигаются в результате их термической обработки, при которой выделяются вторичные фазы, вызывающие повышение прочности. Типичные представители сплавов, упрочняемых термообработкой, – дюралюмины(маркируют буквой Д). К сплавам, упрочняемым термической обработкой, кроме дюралюминов, относятся высокопрочные, ковочные, жаропрочные алюминиевые сплавы.

Дюралюминыхарактеризуются хорошим сочетанием прочности и пластичности и относятся к сплавам системы Al-Cu-Mg.

Согласно диаграмме состояния AL-Cu (Рис. 1.6.) медь с алюминием образуют твердый раствор, максимальная концентрация меди в котором 5,65% при эвтектической температуре.

С понижением температуры растворимость меди уменьшается, достигая при 20°С 0,1%. При этом из твердого раствора выделяется фаза q (CuAl2), содержащая 54,1% меди. Она имеет центрированную тетрагональную решетку и обладает сравнительно высокой твердостью (НV 5310).

какие деформируемые сплавы упрочняются термообработкой. Смотреть фото какие деформируемые сплавы упрочняются термообработкой. Смотреть картинку какие деформируемые сплавы упрочняются термообработкой. Картинка про какие деформируемые сплавы упрочняются термообработкой. Фото какие деформируемые сплавы упрочняются термообработкой

Дюралюмины удовлетворительно обрабатываются резанием в закаленном и состаренном состоянии и плохо – в отожженном состоянии; хорошо свариваются точечной сваркой. Следует указать, что пайка и сварка плавлением не создают равной прочности с основным металлом вследствие склонности сплавов к образованию трещин.

Надежным соединением является соединение на заклепках, которые тоже должны быть изготовлены из дюралюмина. При расклепывании заклепки металл должен обладать высокой пластичностью. Такие свойства имеет дюралюминий (но лишь в свежезакаленном состоянии до старения). Заклепки из дюралюминов ставят не позднее, чем через 2 ч. (Д1) или 20 мин (Д16) после закалки, когда сплав не начал еще заметно упрочняться в процессе старения; позднее ставить заклепки нельзя, так как в результате старения и снижения вследствие этого пластичности при расклепывании образуются трещины. Такая жесткая регламентация создает технологические затруднения. Поэтому был разработан сплав Д18, специально предназначенный для заклепок, который можно расклепывать в состаренном состоянии. Этот сплав содержит пониженное количество упрочняющих элементов (меди, магния) и после закалки имеет существенно более низкую прочность, но более высокую эластичность, чем Д1.

Коррозионная стойкость дюралюминов незначительна.Наиболее распространенный способ защиты их от коррозии – плакирование чистым алюминием. Плакированный дюралюмин обладает такой же коррозионной стойкостью, как чистый алюминий. По техническим условиям толщина плакированного слоя составляет 4-8% от толщины листа (или диаметра проволоки, прутка). Естественно, что наличие менее прочного слоя из чистого алюминия ухудшает прочностные свойства полуфабриката в целом, т.е. плакированный дюралюмин несколько менее прочен, чем не плакированный.

Химический состав и механические свойства дюралюминов представлены в табл.1.2.

Источник

Деформируемые сплавы, упрочняемые термической обработкой.

К таким сплавам относятся дюралюмины ( сложные сплавы систем алюминий – медь –магний или алюминий – медь – магний – цинк). Они имеют пониженную коррозионную стойкость, для повышения которой вводится марганец.

Дюралюмины обычно подвергаются закалке с температуры 500 o С и естественному старению, которому предшествует двух-, трехчасовой инкубационный период. Максимальная прочность достигается через 4…5 суток.

Широкое применение дюралюмины находят в авиастроении, автомобилестроении, строительстве.

Высокопрочными стареющими сплавами являются сплавы, которые кроме меди и магния содержат цинк. Сплавы В95, В96 имеют предел прочности около 650 МПа. Основной потребитель – авиастроение (обшивка, стрингеры, лонжероны).

Ковочные алюминиевые сплавы АК:, АК8 применяются для изготовления поковок. Поковки изготавливаются при температуре 380…450 o С, подвергаются закалке от температуры 500…560 o С и старению при 150…165 o С в течение 6…15 часов.

В состав алюминиевых сплавов дополнительно вводят никель, железо, титан, которые повышают температуру рекристаллизации и жаропрочность до 300 o С.

Изготавливают поршни, лопатки и диски осевых компрессоров, турбореактивных двигателей.

Литейные алюминиевые сплавы.

К литейным сплавам относятся сплавы системы алюминий – кремний (силумины), содержащие 10…13 % кремния.

Присадка к силуминам магния, меди содействует эффекту упрочнения литейных сплавов при старении. Титан и цирконий измельчают зерно. Марганец повышает антикоррозионные свойства. Никель и железо повышают жаропрочность.

Литейные сплавы маркируются от АЛ2 до АЛ20. Силумины широко применяют для изготовления литых деталей приборов и других средне- и малонагруженных деталей, в том числе тонкостенных отливок сложной формы.

Магний и его сплавы

Основными магниевыми сплавами являются сплавы магния с алюминием, цинком, марганцем, цирконием. Сплавы делятся на деформируемые и литейные.

Сплавы упрочняются после закалки и искусственного старения. Закалку проводят от температуры 380…420 o С, старение при температуре 260…300 o С в течение 10…24 часов. Особенностью является длительная выдержка под закалку – 4…24 часа.

Дата добавления: 2018-11-26 ; просмотров: 299 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *