какие дефекты обнаруживаются методами капиллярной дефектоскопии
Капиллярный контроль – простой и надёжный способ обнаружения трещин и раковин
Как метод дефектоскопии ручной и механизированный капиллярный контроль чрезвычайно универсален. Ограничений по форме и габаритам объектов нет. Чёрные и цветные металлы, неферромагнитные сплавы, керамические изделия, пластмассы и даже стекло – всё это может быть проверено при помощи данного вида НК. В технических заданиях на проведение технического освидетельствования и экспертизы промышленной безопасности трубопроводов и резервуаров он часто упоминается в качестве дополнительного. Именно этот метод предпочитают в случаях, когда магнитопорошковая дефектоскопия объектов из ферромагнитных сплавов не способна обеспечить требуемую чувствительность. К тому же далеко не все объекты в эксплуатации можно намагничивать.
При определении чувствительности учитывается также тип освещения (УФ-облучённость или дополнительная подсветка с люминесцентными лампами либо лампами накаливания).
Преимущества и недостатки капиллярного контроля
Даже к стенам помещения есть свои требования – для отделки нужно использовать легко моющиеся покрытия.
Методы капиллярного контроля
Цветной метод базируется на использовании ярко окрашенных жидкостей. Белый проявитель, красный пенетрант – такой контраст легко и быстро «считывается» дефектоскопистом. Подходит для испытаний даже при обычном дневном свете.
Люминесцентный метод – это, если можно так выразиться, цветной метод «на максималках». Проводится в затемнённом помещении с применением ультрафиолетового освещения с длиной волны 365 нм. Индикаторная жидкость содержит люминофор, который на тёмном фоне светится сильным жёлто-зелёным цветом. Данному способу свойственна повышенная чувствительность: люминесцентный капиллярный контроль сварных соединений, околошовной зоны и основного металла способен выявлять дефекты с раскрытием всего 0,1 мкм и более.
Наконец, люминесцентно-цветной метод – самый чувствительный из всех. Предполагает регистрацию контраста между цветным индикаторным рисунком и люминесцентным. Как в видимом спектре, так и длинноволновом УФ-излучении. Сочетание источников освещение помогает регистрировать мельчайшие несплошности.
Порядок проведения
Цветная дефектоскопия сварных швов, околошовной зоны и основного металла выполняется с учётом критериев допустимости дефектов, отражённых в руководящей документации. Трактовать результаты можно по индикаторному рисунку и по фактическим параметрам трещин, раковин или пор, чётко обозначившихся после удаления всех рабочих жидкостей. В целом, основанием для положительной оценки является отсутствие протяжённых следов удлинённого вида. Что касается одиночных несплошностей, то тут всё, повторимся, зависит от инструкции.
Аппаратура и материалы для цветной дефектоскопии
Из необходимых аксессуаров также отметим СИЗ – очки, перчатки, респираторы и пр.
Если не приобретать готовые материалы, а приготавливать их самостоятельно, то делать это можно только в специально оборудованном помещении с вытяжкой.
Помимо уже упомянутых расходников, для капиллярного метода контроля сварных швов по-прежнему востребованы такие проверенные временем материалы, как керосин, ацетон, этиловый спирт, каолин, ксилол и пр. Так, если в отапливаемых помещениях для очистки поверхности можно использовать воду, то при отрицательных температурах не обойтись без спирта.
Исчерпывающий перечень расходников доступен в приложении №5 к методическим рекомендациям РД 13-06-2006.
Сообщество специалистов по капиллярному методу контроля
На форуме «Дефектоскопист.ру» зарегистрированы тысячи специалистов ПВК (ЦД), аттестованных и сертифицированных по СДАНК-02-2021 или СНК ОПО РОНКТД-02-2021 (в зависимости от того, в какой Системе НК нужно подтвердить компетенцию, чтобы зайти на объект заказчика). В специальном разделе на форуме доступны десятки обсуждения по теоретическим и практическим аспектам данного вида неразрушающего контроля. Ему также посвящена отдельная категория в электронной библиотеке «Архиус», где собрана вся актуальная нормативная документация. Если у вас есть какой-либо вопрос, вы можете поискать необходимую информацию на нашем сайте – либо создать новую тему и изложить свою проблему. Коллеги обязательно подскажут, помогут, направят на путь истинный.
Чтобы быть успешным специалистом капиллярного контроля, зарегистрируйтесь на форуме «Дефектоскопист.ру» и следите за обновлениями!
Капиллярная дефектоскопия
Своевременное выявление непроваров сварных швов, трещин, пор в пластмассовых, металлических или керамических изделиях произвольной формы и различных размеров, обеспечивает продолжительную безаварийную эксплуатацию устройств и механизмов, собранных из этих деталей. Одним из наиболее действенных методов неразрушающего контроля (НК) при поиске внутренних повреждений материалов и конструкций является капиллярная дефектоскопия.
Принцип действия метода капиллярной дефектоскопии
В различных отраслях промышленности и строительстве методы НК применяются для обнаружения в материалах и конструкциях поверхностных и сквозных микроскопических дефектов, найти которые без специальных оптических приборов невозможно. Для поиска такого рода повреждений используется капиллярная дефектоскопия.
В основе этого неразрушающего метода лежит капиллярный эффект. Его суть заключается в капиллярном заполнении трещин, царапин и пор пенетрантами – специальными жидкими цветными веществами. Нанесенный после этого на поверхность объекта контроля проявитель растворяет красящие вещества и благодаря диффузии очищает от них дефектные зоны. В результате чего, за счет контраста между одноцветной плоскостью и окрашенными повреждениями, они становятся доступны для количественной и качественной оценки при помощи визуального контроля. На поверхности объекта контроля трещины и поры величиной даже в несколько микрон, смотрятся как линии и точки. Капиллярная дефектоскопия используется также при НК сварных швов для обнаружения непроваров, раковин, свищей, а также их локализации, определения размеров и ориентации.
Достоинства и недостатки метода капиллярной дефектоскопии
Капиллярной дефектоскопии характерны, как положительные стороны, так и недостатки. К его достоинствам относятся:
К негативным сторонам капиллярного метода относятся следующие:
Несмотря на отдельные негативные стороны, капиллярная дефектоскопия остается эффективным неразрушающим способом поиска поверхностных и сквозных дефектов.
Технология метода капиллярной дефектоскопии
Для получения реальной картины расположения, количества и размеров повреждений на поверхности объекта контроля, обнаруженных методом капиллярной дефектоскопии, последовательно выполняются:
Технические итоги капиллярного контроля объекта подлежат визуальной оценке и могут фиксироваться на фото-, видеоносители или переноситься на клейкую ленту.
Оценка результативности контроля капиллярным методом
Технические требования по характеристикам контроля объекта, а также необходимые показатели качества предъявляет разработчик изделия или полуфабриката.
Дефектоскопические материалы
Степень достоверности визуальной оценки итогов капиллярного контроля, зависит от качества целевых наборов дефектоскопических материалов, соответствующих условиям, которые предъявляются к объекту контроля. Целевой набор комплектуется химикатами:
Химикаты из наборов или сочетаний должны обладать взаимной совместимостью и не должны снижать технического качества контролируемых сред, полуфабрикатов или изделий.
Один из лидеров отечественного рынка дефектоскопии – компания «Литас» из Казани предлагает наборы и сочетания химикатов, необходимых при использовании капиллярного метода:
Эти наборы и сочетания химикатов позволяют обнаружить поверхностные дефекты любых размеров и конфигурации, они охватывают весь спектр подлежащих контролю сред, изделий и полуфабрикатов по всем классам чувствительности.
Качество дефектоскопических химикатов, а также правильность методики капиллярного контроля проверяется стандартным образцом – эталоном. Образец – эталон, это пластина из стали Ст20 с выполненной на ее поверхности тупиковой трещиной, ширина раскрытия которой соответствует I, II или III классу чувствительности капиллярного контроля.
Капиллярная дефектоскопия сварных швов и соединений
После монтажа трубопроводов, технических емкостей важно проверить герметичность соединения, чтобы не было утечки транспортируемых сред, конструкция не разрушалась под давлением. Структурные дефекты сварки, микротрещины в зоне термического влияния выявляют методами капиллярного контроля сварных швов. Для проведения исследований используют контрастные, легко проникающие в микродефекты жидкости. Непровары, свищи, прожоги на поверхности шва видны сразу. Внутренние несплошности металлов и неметаллов (капрона, ПВХ, полиэтилена) определяют с применением аппаратуры для неразрушающей диагностики сварных соединений. Контроль с использованием красителей помогает обнаружить дефект, точно установить размеры структурных нарушений. Благодаря неразрушающему цветовому контролю удается обнаружить критические структурные изменения на сварном соединении и около него, в зоне термического влияния. При нарушении технологии сварки, перегреве у шва образуются остаточные напряжения, приводящие к образованию трещин.
Что такое капиллярный контроль
По сути, метод заключается в заполнении пустот в шве, трещин в зоне термовлияния специальной жидкостью. Контраст появляется на обратной стороне шва, если нарушена герметичность. Процедура капиллярного контроля сварных соединений регламентирована ГОСТ 18442-80. Определены классы чувствительности по минимальному размеру выявляемых несплошностей:
Визуальный капиллярный контроль не требует специальной подготовки контролеров. На сварные соединения сначала наносят индикаторный пенетрант, затем проявитель.
Методы капиллярного контроля
Существует несколько способов диагностики:
Выбор метода капиллярной проверки зависит:
Обе группы методов стоит рассмотреть подробно, у каждого имеются технологические особенности воздействия на исследуемую поверхность.
Основные
Различаются по типу используемого индикаторного состава:
По химическому составу, спектральным особенностям красители бывают:
Тип красителя, класс чувствительности проникающей жидкости или суспензии указывается на этикетке.
Комбинированные
Цветовую капиллярную диагностики для точности определения внутреннего состояния сварного шва нередко совмещают с другими методами неразрушающего контроля:
Технология проведения капиллярной дефектоскопии
Процесс состоит из нескольких этапов, нехарактерных для других методов неразрушающей диагностики. Процедура должна соответствовать стандарту, тогда результаты будут достоверными. Для капиллярной дефектоскопии сварных швов помимо комплекта специальных жидкостей нужна вода, нетканые или бумажные салфетки, не оставляющие больших ворсинок. Индикатор проявляется в виде пятен, для их расшифровки дефектосписты пользуются лупами, фонариками.
Очистка поверхности
Сварной шов зачищают аккуратно, чтобы частички исследуемого материала не заполнили области дефектов. Рекомендуют сочетать механический и химический способы очистки поверхности с использованием обезжиривающих растворителей, спирта. Их смывают водой, поверхность высушивают.
Нанесение индикаторного вещества
Исследуемые образцы окрашивают с одной стороны или полностью погружают в раствор. Жидкость в основном производится в аэрозольных баллончиках, струя подается на поверхность под давлением. Некоторые смеси наносят кисточками. Для капиллярного метода контроля сварных швов используют вакуумные камеры, ультразвук, компрессорные установки, чтобы индикатор лучше проникал внутрь несплошностей.
Есть ограничения по температуре проведения диагностики: не ниже +5°С, не выше +50°С. Время выдержки контраста зависит от применяемого пенетранта, от 5 минут до получаса.
Промежуточная очистка
Лишнюю жидкость или суспензию удаляют так, чтобы она не вымывалась из дефектов, очищают прилегающие к исследуемой области участки. Используют впитывающие чистые салфетки, воду или специальные очистители. Затем снова нужно просушить сварное соединение.
Нанесение проявителя
Проявители бывают двух типов: сухие или жидкостные на водной или органической основе. Чаще это вещество белого цвета, на нем хорошо видны контрастные пятна. В зависимости от типа проявителя поврежденные участки станут видимыми через 5–30 минут.
Процесс выявления дефектов
Финальной операцией капиллярного метода контроля сварных швов является расшифровка получившегося рисунка. Учитывается размер индикаторного следа, интенсивность окраски. Чем ярче цвет, тем глубже раковина, непровар, трещина. Данные заносятся в журнал проверок с указанием даты проведения диагностики, данных дефектоскописта.
Повторный капиллярный контроль
Вторичная диагностика необходима:
Важно очистить сварные швы, прилегающую зону от следов специальных жидкостей, используемых для первичной диагностики. При повторной проверке смеси не меняют. Пользуются теми же комплектами спецжидкостей.
Капиллярный метод неразрушающего контроля (кнк) (капиллярная дефектоскопия)
КНК обычно используют для обнаружения дефектов, не видимых невооруженным глазом. Его абсолютную чувствительность определяют средним раскрытием дефекта типа трещин длиной 3-5 мм. выявляемого с заданной вероятностью.
Индикаторные рисунки, образующиеся при контроле, либо обладают способностью люминесцировать в ультрафиолетовых лучах, либо имеют окраску, вызываемую избирательным поглощением (отражением) части падающих на них световых лучей. Линии индикаторного рисунка имеют ширину от 0.05 до 0.3 мм (на расстоянии наилучшего зрения это соответствует угловой ширине от 15″ до Г30″). яркостный контраст 30-60% и более, а также высокий цветовой контраст. Это значительно выше соответствующих параметров поверхностных дефектов, обнаруживаемых визуально (угловой размер от Г до 10″. яркостный контраст 0-5%. цветовой контраст отсутствует).
КНК позволяет диагностировать объекты контроля любых размеров и форм, изготовленных из чёрных и цветных металлов и сплавов, пластмасс, стекла, керамики, а также других твёрдых неферромагнитных материалов. При этом выявляются такие дефекты, как трещины, пористость, рыхлоты.
При КНК применяют следующие материалы:
Для выполнения КНК применяется следующая аппаратура:
Проникающую жидкость наносят на предварительно очищенную поверхность деталей, чтобы заполнить полости возможных поверхностных дефектов. Продолжительность контакта жидкости с поверхностью детали зависит от физических свойств жидкости, характера обнаруживаемых дефектов и способа заполнения жидкостью полостей дефектов.
В табл. 4.1 приведены способы заполнения полостей дефектов пенетрантом. Наиболее простым и распространенным в производственных условиях является капиллярный способ. При этом для улучшения проникновения жидкости в полости может подогреваться проникающая жидкость или проверяемая деталь.
При вакуумном способе деталь помешают в герметичную камеру, из которой откачивают воздух. После подачи проникающей жидкости камеру разгерметизируют. Жидкость заполняет полости дефектов под действием капиллярного и атмосферного давлений. При разрежении около 1 Па выявляются трещины шириной на порядок меньше, чем при капиллярной пропитке.
При ультразвуковом способе ускоряется процесс заполнения полостей дефектов, особенно загрязненных. Высокой эффективности способ достигает при использовании пенетрантов средней и высокой вязкости (нориола, шубнкола. смесей масла с керосином), когда направление колебаний совпадает с плоскостью полости дефекта.
Под воздействием статических сил увеличивается ширина раскрытия полости дефектов, улучшаются условия заполнения этих полостей н выявления дефектов ннзковязкимн жидкостями.
При обычных условиях, например, заполнение поверхностных трещин раскрытием 0.002 мм и глубиной происходит за 20 с: такая же трещина глубиной 3 мм полностью заполняется примерно за 40 с.
Скорость заполнения сквозных дефектов зависит от их размеров и конфигурации, время заполнения измеряется секундами.
Индикаторные пенетранты для красок и люминофоров, приготовленные на основе растворителей (керосин, бензин и т.п.). достаточно быстро испаряются. Длительная выдержка пенетранта на контролируемой поверхности может привести к его высыханию и выпадению в виде осадка из частиц красителя или люминофора. Эти частицы, являясь сорбентом, могут привести к извлечению пенетранта из устья дефекта: в результате выявление дефектов при контроле ухудшается. Для предотвращения высыхания можно периодически наносить дополнительно пенетрант. однако это процесс трудоемкий, особенно при контроле больших площадей, поэтому время нахождения пенетранта на контролируемой поверхности обычно ограничено 3-5 мин. После этого индикаторный пенетрант необходимо удалить с поверхности КО.
Способы удаления проникающей жидкости с поверхности выбирают с учетом необходимости сохранения ее в полостях дефектов, а также типа пенетранта. шероховатости поверхности, условий контроля, объема работ и требуемой производительности труда. При локальном контроле условиях в случае использования невысыхающих жидкостей детали протирают ветошью или бумагой. При большом объеме работ или при контроле шероховатых деталей (с чистотой обработки поверхности ниже пятого класса) этот способ непригоден. В этих случаях применяют промывку органическими растворителей!, водой и пр. Для удаления невысыхающих жидкостей применяют обдувку струей песка, дроби, косточковой крошки, опилок и т.п. Гашением устраняется люминесценция или окраска при использовании специальных проникающих жидкостей. При контроле массовых деталей в цеховых условиях применяют комбинированный способ удаления проникающей жидкости с поверхности деталей.
Полноту удаления пенетранта определяют визуально или (при люминисцентном методе) в ультрафиолетовом свете. Оценку считают удовлетворительной, если отсутствует светящийся или окрашенный фон.
Если фон обнаружен, для повторной очистки используют очиститель типа O-l или 0-2. При температуре окружающего воздуха ниже 8°С индикаторный пенетрант с поверхности КО снимают бязью, смоченной в спирте. Влагу с поверхности изделия удаляют влажной бязью до полного исчезновения с нее капель воды, после чего поверхность считается подготовленной к следующей операции. Проявитель чаще всего наносят кистью. При этом расход проявителя значительно меньше, чем при нанесении его краскораспылителем, окружающий воздух меньше насыщается вредными для человека парами растворителей и аэрозолей.В цеховых условиях применяют также способ посыпания и способ наложения липких пленок. Затем происходит медленное перемещение мениска в глубь трещины (рис. 4.2) и незначительное увеличение индикаторного следа. Размер индикаторного следа определяется объемом пенетранта. извлеченного из устья трещины, после образования мениска по всей ее протяженности.
В некоторых случаях в условиях производства возникает необходимость многократного контроля. Перед повторным контролем проводят полный цикл подготовки изделий, тщательно промывая КО ацетоном, бензином или другими растворителями для удаления остатков дефектоскопических материалов из поверхностных дефектов. Небольшие изделия перед повторным контролем рекомендуется помещать на несколько часов в растворители индикаторного красителя. В качестве иллюстрации влияния первичного контроля на последующие проверки на рис. 4.3 приведены результаты двух серий (каждая по пять раз) контроля образцов из стали, на которых при первичном осмотре было обнаружено 11 единичных трещин.Осмотр контролируемой поверхности, как правило, проводят дважды: через 5-6 мин для обнаружения крупных дефектов и через 25-60 мин для обнаружения мелких. При люминесцентном методе контроля используют ультрафиолетовое излучение с длиной волны Сумма площадей индикаторных следов, обнаруженных на образцах, изменяется в зависимости от числа проведенных ранее испытаний.
Между сериями испытаний образцы помешали на 8-10 ч в растворители индикаторного красителя. Из рис. 4.3 видно, что такая обработка образцов почти полностью исключает влияние загрязнений дефектов остатками дефектоскопических материалов, используемых на предыдущих стадиях контроля.
КНК подразделяется на четыре уровня, как указано в табл. 4.2.
У КНК есть верхний и нижний пределы чувствительности. Верхний предел определяется наибольшей шириной дефекта, при которой пенетрант полностью вытекает из него, образуя размытое облако. Нижний предел определяется настолько малым дефектом, что проникшего в него пенетранта недостаточно для обнаружения.
Чувствительность КНК определяется геометрическим к. и оптическим ко факторами: KKHK=f(kr. ko). где f- знак функции.
Приборы для КНК выпускаются серийно. В качестве примеров приведём отечественный прибор ЛДА-3 н прибор США «Тнн-Kq) АФБ». Последний позволяет контролировать в течение часа до 500 лопаток турбин.
Основные положения, которые необходимо знать при КНК. следующие.
Общий осмотр проводят невооруженным глазом или с применением луп малого увеличения с большим полем зрения 2.
Общий осмотр проводят невооруженным глазом или с применением луп малого увеличения с большим полем зрения. При осмотре отыскивают окрашенный или люминесцирующнй индикаторный рисунок, обращая внимание на основные признаки:
— Трещины любого происхождения, волосовины, закаты, неслитнны. непровары. неспаи, плены выявляются в виде четких, иногда прерывистых окрашенных линий различной конфигурации (рис.4.5. 4.6)
— Растрескивание материала, межкристаллнтная коррозия участков поверхности крупнозернистых сплавов проявляются в виде группы отдельных коротких линий или сетки (рис.4.7. б)
— Межкристалльная коррозия участков поверхности мелкозернистых сплавов выявляется в виде пятен, размытых полос:
— Поры, язвенная коррозия, выкрашивание материала, эрозионные повреждения поверхности выявляются отдельными точками, звездочками (рис.4.7, а).
Обнаружение рисунка, соответствующего указанным выше основным признакам, служит основанием для анализа допустимости дефекта по его размеру, положению, характеру.
«Возможности капиллярного метода неразрушающего контроля»
Капиллярный метод неразрушающего контроля основан на капиллярном проникновении индикаторных жидкостей (пенетрантов) в полости поверхностных и сквозных несплошностей материала объекта контроля и регистрации образующихся индикаторных следов визуальным способом.
Данный метод неразрушающего контроля предназначен для выявления невидимых или слабо видимых невооруженным глазом поверхностных и сквозных дефектов (трещины, поры, раковины, непровары, межкристаллическая коррозия, свищи и т.д.) в объектах контроля, определения их расположения, протяженности и ориентации по поверхности.
Проявителем называют дефектоскопический материал, предназначенный для извлечения пенетранта из капиллярной несплошности с целью образования четкого индикаторного рисунка и создания контрастирующего с ним фона. Существует пять основных видов проявителей, используемых с пенетрантами:
— суспензия в растворителе;
Процесс капиллярного контроля состоит из 5 этапов:
К недостаткам капиллярного контроля следует отнести его высокую трудоемкость при отсутствии механизации, большую длительность процесса контроля (от 30 мин до 1,5 ч), снижение достоверности результатов при отрицательных температурах, субъективность контроля (зависимость достоверности результатов от профессионализма оператора).
Достоинствами капиллярного контроля являются: простота операций контроля, несложность оборудования, применимость к широкому спектру материалов, в том числе к немагнитным металлам. Главным преимуществом капиллярной дефектоскопии является то, что с его помощью можно не только обнаружить поверхностные и сквозные дефекты, но и получить по их расположению, протяженности, форме и ориентации по поверхности ценную информацию о характере дефекта и даже некоторых причинах его возникновения (концентрация напряжений, несоблюдение технологии и пр.).
Дефектоскопические материалы для цветной дефектоскопии выбирают в зависимости от требований, предъявляемых к контролируемому объекту, его состояния и условий контроля. В качестве параметра размера дефекта принимается поперечный размер дефекта на поверхности объекта контроля – так называемая ширина раскрытия дефекта. Минимальная величина раскрытия выявленных дефектов называется нижним порогом чувствительности и ограничивается тем, что весьма малое количество пенетранта, задержавшееся в полости небольшого дефекта, оказывается недостаточным, чтобы получить контрастную индикацию при данной толщине слоя проявляющего вещества. Существует также верхний порог чувствительности, который определяется тем, что из широких, но неглубоких дефектов пенетрант вымывается при устранении излишков пенетранта на поверхности. Обнаружение индикаторных следов, соответствующего указанным выше основным признакам, служит основанием для анализа о допустимости дефекта по его размеру, характеру, положению. ГОСТ 18442-80 установлено 5 классов чувствительности (по нижнему порогу) в зависимости от размеров дефектов